12.1: Functions of Several Variables

Consider the following formulas:
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DEFINITION 1. Let D © R*. A function f of two variables is a rule that assigns to each

ordered pair {z,y) in [} a unigue real number denoted by f{r, y).

The set 1) is the domain of f and the range of f is the sel of values that [ fakes on, that is

{f(zy)l(ry) e D}

REMARK 2. Obwviously, one can choose the independent variables arbitrary, for example, © =

fly,z).
« GRAPH of f(z.y).

Recall that a graph of a function [ of one vanable s a curve C with equation y = f(x).

DEFINITION 3. The graph of f with domain [J is the set:

S ={(z,y,2) € Rz = f(z,y). (z,y)€D}.

The graph of a function f of two variables i1s a surface 5 1n three dimensional space with

equation z = f(r, y).
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EXAMPLE 4. Find the domain and sketch the graph of the functions (1)-(4). What is the range?
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EXAMPLE 5. Sketch the domain of each of the following:
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e LEVEL (CONTOUR) CURVES method of visnalizing functions is the method borrowed
from mapmakers. It is a contour map on which points of constant elevation are joined to form

level (or contour) curves.

DEFINITION 6. The level (contour) curves of a function of two variables are the curves
with equations P\t" Gurve (ﬁlm in Hhe m
2=K 22K)

where k is a constant in the range of f.

A level curve is the locus of all points at which f takes a given value k ( it shows where the
graph of f has height k).
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Sketch contour map.
EXAMPLE 7. Sketch the level curves of the functions (2) and (3) for the values k = 0,1,2,3,4:

(3) z=+/22+ 42

(2) z=a*+y*
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DEFINITION 8. Let D C R®. A function f of three variables is a rule that assigns to each

ordered pair (z,y,2) in D a unique real number denoted by f(x,y, z).

e Functions of three variables.

Examples of functions of 3 variables:

fley,2) =2 +y* + 22,
u=xyz
T(s1,52,53) =Ins; + 125, — 53°.

Emphasize that domains of functions of three variables are regions in three dimensional space.



EXAMPLE 9. Find the domain of the following function:

In(36 — % — 32 — 22)
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Note that for functions of three variables it is impossible to visualize its graph. However we

can examine them by their level surfaces:

flz,y,2) =k

where £ is a constant in the range of f. If the point (z,y, ) moves along a level surface, the value

of f(x,y,z) remains fixed.

EXAMPLE 10. Find the level surfaces of the function u = x* + y* — 2. = k
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REMARK 11. For an i i
y function there exist a unique level curve (surface) through given point!!!
nt!!!
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