to the graph of the function $z=f(x, y)$

12.4: Tangent Planes $\sqrt{\text { and }}$ Differentials

Suppose that $f(x, y)$ has continuous first partial derivatives and a surface S has equation $z=$ $f(x, y)$. Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S, i.e. $z_{0}=f\left(x_{0}, y_{0}\right)$

Denote by C_{1} the trace to $f(x, y)$ for the plane $y=y_{0}$ and denote by C_{2} the trace to $f(x, y)$ for the plane $x=x_{0}$. let L_{1} be the tangent line to the trace C_{1} and let L_{2} be the tangent line to the trace C_{2}.

The tangent plane to the surface S (or to the graph of $f(x, y)$) at the point P is defined to be the plane that contains both the tangent lines L_{1} and L_{2}

Title : Feb 6-8:57 AM (Page 1 of 9)

THEOREM 1. An equation of the tangent plane to the graph of the function $z=f(x, y)$ at th point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

CONCLUSION:A normal vector to the tangent plane to the surface $z=f(x, y)$ at the poin $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\mathrm{n}=\mathrm{n}\left(x_{0}, y_{0}\right)=\left\langle f_{x}\left(\boldsymbol{x}_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right\rangle .
$$

The line through the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ parallel to the vector n is perpendicular to th above tangent plane. This line is called the normal line to the surface $z=f(x, y)$ at P. follows that this normal line can be expressed parametrically as

Title : Feb 6-9:03 AM (Page 2 of 9)

EXAMPLE 2. Find an equation of the tangent plane to the graph of the function $z=x^{2}+y^{2}+8$ at the point $(1,1)$.

$$
z(1,1)=1^{2}+1^{2}+8=10 \quad z(x, y)
$$

!

Tangent point $P(1,1,10)$
Normal vector $\vec{N}=\left\langle z_{x}(1,1), z_{y}(1,1),-1\right\rangle=\langle 2,2,-1\rangle$

$$
\begin{aligned}
& z_{x}=2 x \\
& z_{y}=2 y
\end{aligned}
$$

$$
2(x-1)+2(y-1)-(z-10)=0
$$

$$
2 x+2 y-z+6=0
$$

Ex. 3 Find param. equations for the normal line to $z=e^{4 y} \sin (4 x)$ at the point $P\left(\frac{\pi}{8}, 0,1\right)$.

$$
\begin{array}{l|l}
\vec{n}=\left\langle z_{x}\left(\frac{\pi}{8}, 0\right),\right. & \left.z_{y}\left(\frac{\pi}{8}, 0\right),-1\right\rangle \\
z_{x}=4 e^{4 y} \cos (4 x) & z_{x}\left(\frac{\pi}{8}, 0\right)=0 \\
z_{y}=4 e^{4 y} \sin (4 x) & z_{y}\left(\frac{\pi}{8}, 0\right)=4
\end{array}
$$

a normal vector
for tangent $\rightarrow \vec{n}=\langle 0,4,-1\rangle=\vec{V}$ a direction vector plane
 for normal line

$$
\begin{aligned}
& x=\frac{\pi}{8}+t \cdot 0 \\
& y=0+t \cdot 4 \\
& z=1+t \cdot(-1)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\pi}{8} \\
& y=4 t \\
& z=1-t
\end{aligned}
$$

$$
\begin{aligned}
& d f(x)=f^{\prime}(x) d x \\
& \Delta x=d x, \Delta f \approx d f
\end{aligned}
$$

The differentials $\mathrm{d} x$ and $\mathrm{d} y$ are independent variables. The differential $\mathrm{d} z$ (or the total differential) is defined by

$$
\mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y .
$$

FACT: $\Delta \approx \approx d z . f(a+\Delta x, b+\Delta y)-f(a, b) \quad x=a+\Delta x$
This implies: $\{f(a+\Delta x, b+\Delta b)-f(a(b)$
$y=b+\Delta y$
or
$f(x, y) \approx f(a, b)+d z(a, b)$

[^0]Title : Feb 6-9:04 AM (Page 5 of 9)

EXAMPLE 4. Use differentials to find an approximate value for $\sqrt{1.03^{2}+1.98^{3}}$.

$$
f(x, y)=\sqrt{x^{2}+y^{3}}
$$

Note $f(1,2)=\sqrt{1^{2}+2^{3}}=\sqrt{9}=3$

$$
\begin{gathered}
d x \equiv \Delta x=1.03-1=0.03 \\
d y=\Delta y=1.98-2=-0.02 \\
f(1.03,1.98) \approx f(1,2)+d f(1,2)=3+d f(1,2) \\
f_{x}=\frac{\partial}{\partial x}\left(\sqrt{x^{2}+y^{3}}\right)=\frac{1}{\partial \sqrt{x^{2}+y^{3}}} \cdot 2 x \\
f_{x}(1,2)=\frac{1}{3} \\
f_{y}=\frac{\partial}{\partial y}\left(\sqrt{x^{2}+y^{3}}\right)=\frac{3 y^{2}}{2 \sqrt{x^{2}+y^{3}}} \begin{array}{l}
f_{y}(1,2)=\frac{3.4}{2 \cdot 3}=2 \\
\sqrt{1.03^{2}+1.98^{3}}=f(1.03,1.98) \approx 3+(-0.03) \cdot 0.03+2 \cdot(-0) \\
=0.01-0.04 \\
=-0.03 \\
f_{x}(1,2) d x+f_{y}(1,2)
\end{array} \\
=2.11
\end{gathered}
$$

If $u=f(x, y, z)$ then the differential $\mathrm{d} u$ at the point $(x, y, z)=(a, b, c)$ is defined in terms of the differentials $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} z$ of the independent variables:

$$
\mathrm{d} u(a, b, c)=f_{x}(a, b, c) \mathrm{d} x+f_{y}(a, b, c) \mathrm{d} y+f_{z}(a, b, c) \mathrm{d} z
$$

EXAMPLE 5. The dimensions of a closed rectangular box are measured as $80 \mathrm{~cm}, 60 \mathrm{~cm}$ and 50 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

$$
S=2(x y+x z+y z)
$$

$\|$

$$
S(x, y, z)
$$

x

$$
\Delta S(80,60,50) \approx d S(80,60,50)
$$

error $\approx S_{x}(80,60,50) d x+S_{y}$

$$
\begin{aligned}
& S_{x}=\frac{\partial}{\partial x}(2(x y+x z+y z))=2(y+z)=2(60+50)=220 \\
& S_{y}=2(x+z)=2(80+50)=260 \\
& S_{z}=2(x+y)=2(80+60)=280 \\
& \text { error } \approx 0.2(220+260+280)=0.2 \cdot 760=152 \mathrm{~cm}^{2}
\end{aligned}
$$

A function $f(x, y)$ is differentiable at (a, b) if its partial derivatives f_{x} and f_{y} exist and are continuous at (a, b).

For example, all polynomial and rational functions are differentiable on their natural domains.
Let a surface S be a graph of a differentiable function f. As we zoom in toward a point on the surface S, the surface looks more and more like a plane (its tangent plane) and we can approximate the function f by a linear function of two variables.

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)=: L(x, y) .
$$

[^0]: ${ }^{1}$ the pictures are from our textbook

