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Suppose that f(z,y) has continuous first partial derivatives and a surface S has equation z =
flz,y). Let P(xq,yo,20) be a point on S, i.e. 29 = f(zo,%0)-

Denote by C; the trace to f(z,y) for the plane y = yp and denote by Cs the trace to f(z,y)
for the plane z = xp. let L1 be the tangent line to the trace C; and let Lo be the tangent line to
the trace C5.

The tangent plane to the surface S (or to the graph of f(z,y)) at the point P is defined to
be the plane that contains both the tangent lines L, and L,.
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THEOREM 1. An equation of the tangent plane to the graph of the function z = f(x,y) at th
point P(zo, Yo, f(To,Y0)) 18

z — f(Z0,%0) = fo(To, y0)(x — ) + fy(@o: %0) (Y — Yo)-

CONCLUSION:A normal vector to the tangent plane to the surface 2z = f(z,y) at the poin

P(x0, Yo, f(0,%0)) is
n = «17!} y[l %Yo‘ ‘[,(x‘ly' 5'

The line through the point P(xq, Yo, f(7o,%s)) parallel to the vector n is perpendicular to t

above tangent plane. This line is called the normal line to the surface z = f(z,y) at P.
follows that this normal line can be expressed parametrically as

ANl
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EXAMPLE 2. Find an equation of the tangent plane to the graph of the function z = x? +y?+8
at the point (1,1). U
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Ex.3 Find  param. 2quations fov Hhe
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AP = (A

px=d% bt wd

The differentials dz and dy are independent variables. The differential dz (or the total

differential) is defined by

Oz dz
Oz o dy ¢

x:a-rbx

FACT: Az =~ dz.
e LA brbY) - £(ab)
This 1n1phe§ ( ( ! y= b+ b\’

|7(a+ Az, b+ Ay) ~ f(a,b) + dz(a, bﬁ

£ (xY) o flay0) + d2(ab)
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tangent plane

2= fla, by = [ la. by = aj+ f la, biy=b

lthe pictures are from our texthook
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EXAMPLE 4. Use differentials to find an approzimate value for +/1.032 + 1.983.
]

2.3
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If u= f(z,y, z) then the differential du at the point (z,y, 2) = (a,b, ¢) is defined in terms of

the differentials dx, dy and dz of the independent variables:

du(a,b,c) = f.(a,b, c)dz + f,(a,b,c)dy + f.(a,b,c)dz.
! J
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EXAMPLE 5. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm cmd 50

em, respectively, with a possible error of 0.2 em in each dimension. Use dzﬁerentwls to estimate

the mazimum error in calculating the surface area of the boz.

S; 9 (7(\[ ¥ 72+ )2)
Il
S(xY,2)

(30,60,50) 4 S(80,69, 9’)

A‘{ 02,02.
45 Jz
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A function f(z,y) s differentiable at (a,b) if its partial derivatives f, and f, exist and are
continuous at (a,b).

For example, all polynomial and rational functions are differentiable on their natural domains.

Let a surface S be a graph of a differentiable function f. As we zoom in toward a point
on the surface S , the surface looks more and more like a plane (its tangent plane) and we can

approximate the function f by a linear function of two variables.

f(z,y) = f(a,b) + f.(a,b)(z —a) + f,(a,b)(y —b) =: L(z,y).
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