23: Appendix: Matrices and Matrix Multiplication (section 7.2)

Determinant
11. Determinant of a matrix is a function that takes a square matrix and converts it into a number.
12. Determinant of 2×2 and 3×3 matrices.

- A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- A determinant of order 3 is defined by

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| & =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
\end{aligned}
$$

- If the determinant of a matrix is zero we call that matrix singular and if the determinant of a matrix isnt zero we call the matrix nonsingular.

Matrix Inverse. Let A be a square matrix of size n. A square matrix, A^{-1}, of size n, such that $A A^{-1}=I_{n}$ (or , equivalently, $A^{-1} A=I_{n}$) is called an inverse matrix.
14. A^{-1} in the case $n=2$: If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ then

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \operatorname{det} A=\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=4-6=-2 \neq 0 \Rightarrow A \text { is }
$$

non singular \Rightarrow inverse A^{-1} exists:

$$
A^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
$$

15. FACT: A^{-1} exists if and only if $\operatorname{det} A \neq 0$.

Equivalently:

- If A is nonsingular then A^{-1} will exist.
- If A is singular then A^{-1} will NOT exist.

16. Solving Systems of Equations with Inverses.

Let $A X=B$ be a linear system of n equations in n unknowns and A^{-1} exists, then $X=A^{-1} B$ is the unique solution of the system.

$$
\begin{aligned}
& \underbrace{A^{-1} A X}=A^{-1} B \\
& X=A^{-1} B \\
& x
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24: Basic Theory of Systems of First Order Linear Equations (sec. 7.4) } \\
& \text { System of homogeneous linear equations (continued) } \\
& \begin{array}{l}
\text { Consider IVP } \\
\text { By Superposition Principle, i }
\end{array} \\
& \begin{array}{l}
X^{\prime}=P(t) X, X\left(t_{0}\right)=\boldsymbol{B}
\end{array} \Rightarrow\left(\begin{array}{c}
\boldsymbol{x}_{\mathbf{1}}\left(\boldsymbol{t}_{0}\right) \\
\boldsymbol{x}_{\mathbf{2}}\left(\boldsymbol{t}_{0}\right) \\
\dot{\boldsymbol{x}}_{\boldsymbol{n}}\left(\boldsymbol{t}_{0}\right)
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{(2)} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right) \\
& X_{1}(t)=\left(\begin{array}{c}
x_{11}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right), \ldots, X_{n}(t)=\left(\begin{array}{c}
x_{1 n}(t) \\
\vdots \\
x_{n n}(t)
\end{array}\right) \\
& \text { re solutions of the homogeneous system (1), then the linear combination } \\
& X(t)=C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t) \\
& \text { is also a solution for any constants } C_{1}, \ldots, C_{n} \text {. } \\
& \text { Question: How to determine the the constants } C_{1}, \ldots, C_{n} \text { corresponding to the given IVP? } \\
& B=x\left(t_{0}\right)=C_{1} x_{1}\left(t_{0}\right)+\ldots+C_{n} x_{n}\left(t_{0}\right) \\
& =C_{1}\left(\begin{array}{c}
x_{n}\left(t_{0}\right) \\
\vdots \\
x_{n 1}\left(t_{0}\right)
\end{array}\right)+\ldots+C_{n}\left(\begin{array}{c}
x_{1 n}\left(t_{0}\right) \\
\vdots \\
x_{n n}\left(t_{0}\right)
\end{array}\right)=\left(\begin{array}{c}
c_{1} x_{11}\left(t_{0}\right)+\ldots+c_{n} x_{1 n}\left(t_{0}\right) \\
\cdots \\
\cdots \\
c_{1} x_{n 1}\left(t_{0}\right)+\ldots+c_{n} x_{n n}\left(t_{0}\right)
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{cccc}
x_{11}\left(t_{0}\right) & \ldots & x_{1 n}\left(t_{0}\right) \\
\cdots & \cdots & \cdots & \cdot \\
x_{n 1}\left(t_{0}\right) & \ldots & x_{n n}\left(t_{0}\right)
\end{array}\right)}_{\psi\left(t_{0}\right)}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \\
& \Psi(t)=\left(\begin{array}{ccc}
x_{11}(t) & \cdots & x_{12}(t) \\
\vdots & \vdots & \vdots \\
x_{n 1}(t) & \cdots & x_{n n}(t)
\end{array}\right) \\
& \text { Then } B=\boldsymbol{X}_{\left(t_{0}\right)}=C_{1} X_{1}\left(t_{0}\right)+\ldots+C_{n} X_{n}\left(t_{0}\right)=\Psi\left(t_{0}\right)\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right) \text {, equivalently } \\
& \Psi\left(t_{0}\right)\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)=B \Rightarrow\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)=\psi^{-1}\left(t_{0}\right) B \\
& \text { We can find a solution for any initial condition given by vector column } \boldsymbol{B} \text { if and only if } \\
& \operatorname{det} \Psi\left(t_{0}\right) \neq 0 \text {. In other words, if WRONSKIAN } \neq 0 \\
& \text { Note that this determinant is called the Wronskian of the solutions } X_{1}, \ldots, X_{n} \text { and is } \\
& \text { denoted by } \\
& W\left[X_{1}, \ldots, X_{n}\right](t)=\operatorname{det} \Psi(t) . \\
& \text { Note that by analogy with section } 3.2, \operatorname{det} \Psi\left(t_{0}\right) \neq 0 \operatorname{implies} \operatorname{det} \Psi(t) \neq 0 \text { for any } t \\
& \begin{array}{l}
\text { If } \operatorname{det} \Psi(t) \neq 0 \text { then } X_{1}, \ldots, X_{n} \text { is called the fundamen } \\
\text { solution of the system (1) is } C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t) \text {. }
\end{array}
\end{aligned}
$$

Title : Apr 3-3:37 PM (Page 4 of 5)
9. Question: How to find a fundamental set of solutions? In the next section we answer it for the case $P(t)=$ const, i.e. for system of linear homogeneous equations with constant coefficients.

$$
P(t)=A^{\prime \prime}
$$

10. Find general solution of $X^{\prime}=A X$, where $A=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$.

$$
\begin{aligned}
& x=\binom{x_{1}}{x_{2}} \\
& x^{\prime}=A x \Leftrightarrow\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\binom{2 x_{1}}{-x_{2}} \Rightarrow\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1} \quad \text { uncoupled } \\
x_{2}^{\prime}=-x_{2}
\end{array}\right. \\
& x_{1}^{\prime}=2 x_{1} \Rightarrow x_{1}=c_{1} e^{2 t} \Rightarrow x_{2}=c_{2} e^{-t} \Rightarrow X=\binom{c_{1} e^{2 t}}{c_{2} e^{-t}}
\end{aligned}
$$

Rewrite the general solution in alternate form

$$
\begin{aligned}
& \text { Rewrite the general }\binom{c_{1} e^{2 t}}{0}+\binom{0}{c_{2} e^{-t}}=c_{1} e^{2 t}\binom{1}{0}+c_{2} e^{-t}\binom{0}{1} \\
& A\binom{1}{0}=\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\binom{2}{0}=2\binom{1}{0}
\end{aligned}
$$

In other words, A stretches twice in the direction of the 34 -axis.

$$
A\binom{0}{1}=\left(\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right)\binom{0}{1}=\binom{0}{-1}=-\binom{0}{1}
$$

