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25: Systems of Linear Algebraic Equations. Eigenvalues and Eigenvec-
tors (section 7.3)

Eigenvalues and Eigenvectors

L. A munber A is called an eigenvalue of matrix A if there exists a nonzero vector v such
that

Av = Av,

and v is called an eigenvector corresponding to the eigenvalue A,

2. Example. If A is diagonal matrix,

A O L..00
0 A ... D
A=
0 0 A,
then the numbers Ay, Ao, ..., A\, are eigenvalues and the vectors
0 0
0 1
U1 = Vo= . |- Up =
0 0 1

are the corresponding eigenvectors.



3. How to find eigenvalues?

Eigenvalue are solutions of the following characteristic equation (polynomial):

det(A— A1) =0.

4. Show that the characteristic equation in the case n = 2 can be found as

A — trace(A)A + det(A) = 0.
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6. Example. Find eigenvalues and eigenvectors of the matrix 4 = 5 .

5. Remark. For n x n matrix the characteristic equation is a polynomial equation of degree n.
The eigenvectors corresponding to A can be found by solving the corresponding system of

linear equations (A — A )v = 0 (as we will see in the next examples).



7. Example. Given

(a) Find eigenvalues of A.
det(A-N)=-(A\-1)(A\+2)(\-3) = O

(b) Find eigenvectors of A (use Gauss Elimination Method below).
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