7. Differences between Linear and Nonlinear Equations (section 2.4)

1. Existence and Uniqueness of Solutions
THEOREM 1. Let the functions f and 0f/dy be continuous in some rectangle
R={(t,y)la<t<p, ~v<y<i}

containing the point (to,vyg). Then in some interval to — h < t < tg+ h contained in

I ={t| a <t < B}, there is a unique solution y = y(t) of the initial value problem
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2. By this theorem we can guarantee the existence of solution only for values of ¢ which are

sufficiently closed to tp, but not for all £.

3. Geometric consequence of the theorem is that two integral curves never intersect each other.



4. The condition “df/dy be continuous in some rectangle...” is important for uniqueness.
Tlustration: Apply the existence and uniqueness theorem to the following IVP:

v =y"% y(0)=0.
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Graphs of both functions pass through the same point (0,0). In other words an IVP can have
several solutions!
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. Existence and Uniqueness of Solutions of Linear ODE

THEOREM 2. If the functions p(t) and g(t) are continuous on the interval [ = {t| a <t < 3},

then for ant t =ty on I, there is a unique solution y = y(t) of the initial value problem

Ly’ +p(t)y =g(t), y(te) = vo. ) (1)

Note that the conditions of the Theorm 1 hold automatically for linear ODE.
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7. Determine (without solving the problem) an interval in which the solution of the given TVP

18 certain to exast:
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8. Consider

t + 2y = 42 L(nea.t- @)

(a) Determine (without solving the problem) an interval in which the solution (2) satisfying

y(to) = yo with t5 > 0 is certain to emst TL 9
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(b) The solution of IVP from item (a) found by the method of integrating factor is given: )
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Using that information discuss the domain of the solution and compare your conclusion
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