EXAMPLE 8. Given differential equation
"+ +ay=0.

a) Seek power series solutions of this equation about zy = 1: find the recurrence relation for
coefficients of the power series about zp = 1 representing a solution (in general, a recurrence
relation is a relation expressing the nth coefficients a,, in terms of some previous ones).
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b) Find the first five terms in the power expansion about o = 1 of the solution of the equation
(1) satisfying initial conditions y(1) =3, y/(1) = 1. ¢
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REMARK 7. The coefficients a,, of the series Z a,(x — 39)" withn > 2 are uniquely determined
n=0

by the first two coefficients ag and a,. Moreover, a,, are expressed linearly in terms of ag and a,
so that

y(z) = aoy(z) + ar1y2(), (¥

where yy () is the solution satisfying the initial conditions y,(xo) = 1, y}(x¢) = 0 and yy(x) is the
solution satisfying the initial conditions ys(xz) = 0, yh(xo) = 1.
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Py + QY + REIJ=0

THEOREM 6. 1. Ifxg is an ordinary point of differential equation (1), then any solution y(x)

of (1) is analytic at x = xy, i.e can be found as a power series Z an(x — x)".
n=0
2. The radius of convergence of this series is at least as large as the minimum of the radii of
Q(x) and q(z) = R(x)
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convergence of the Taylor series at xy of functions p(x) :=
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EXAMPLE 11. Determine a lower bound for the radius of convergence of series solutions about
each given point of the following equation:
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b) (224 2z + 2)y" + zy/ + 4y = 0 about 5509“\“‘ ‘;oiﬁ\'f ce ‘, and 4 are
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JEZ"{M\XIP’LE 5. Given
sinzy” + 2%y + (1 — cosz)y =0

Y \ -3
?‘(ID: g;j,:"'L -\Sin" ( “.) }Y(\__ _*x \7.
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a) is xg 0()[‘ singular b) is @y = 27r or singular?
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