EXAMPLE 8. Given differential equation

$$xy'' + y' + xy = 0.$$

a) Seek power series solutions of this equation about $x_0 = 1$: find the recurrence relation for coefficients of the power series about $x_0 = 1$ representing a solution (in general, a recurrence relation is a relation expressing the nth coefficients a_n in terms of some previous ones).

relation is a relation expressing the nth coefficients
$$a_n$$
 in terms of some previous ones).

$$y(x) = \sum_{n=0}^{\infty} a_n(x-1)^n \quad \text{Yeskrday we found}:$$

$$a_0 + a_1 + 2a_2 + \sum_{n=1}^{\infty} \left(a_{n-1} + a_n + a_{n+1} \left(n+1 \right)^2 + a_{n+2} \left(n+1 \right) \left(n+2 \right) \right) (x-1)^n = 0$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for all } x \quad \text{for all } x$$

$$\sum_{n=1}^{\infty} b_n(x-2)^n = 0 \quad \text{for all } x \quad \text{for al$$

$$a_{n+2} = -\frac{a_{n-1} + a_n + a_{n+1} (n+1)^2}{(n+1)(n+2)}$$

How to use the reccurence relations

$$a_2 = -\frac{a_0 + a_1}{2}$$

$$a_3 = -\frac{a_0 + a_1 + 4a_2}{2 \cdot 3} = -\frac{a_0 + a_1 - \frac{1}{2} \cdot \frac{a_0 + a_1}{2}}{6} = \frac{a_0 + a_1}{6}$$

$$a_{4} = -\frac{a_{1} + a_{2} + 9a_{3}}{3 \cdot 4} = -\frac{a_{1} - \frac{a_{0} + a_{1}}{2} + \frac{9}{6}(a_{0} + a_{1})}{12} = -\frac{1}{12}(a_{0} + 2a_{1})$$

Title: Apr 30-1:38 PM (Page 1 of 6)

b) Find the first five terms in the power expansion about
$$x_0 = 1$$
 of the solution of the equation (1) satisfying initial conditions $y(1) = 3$, $y'(1) = 1$.

$$y(x) = \int_{h=0}^{\infty} \alpha_n(x-1)^n = \frac{1}{\alpha_n} + \frac{\alpha_1}{\alpha_1}(x-1)^n + \frac{\alpha_2}{\alpha_2}(x-1)^n + \frac{\alpha_3}{\alpha_n}(x-1)^n + \frac{\alpha_4}{\alpha_n}(x-1)^n + \frac{\alpha_4}{\alpha_n}(x$$

Title: Apr 30-1:40 PM (Page 2 of 6)

P(x)y" + Q(x)y" + R(x)y=0

- THEOREM 6. 1. If x_0 is an ordinary point of differential equation (1), then any solution y(x) of (1) is analytic at $x = x_0$, i.e can be found as a power series $\sum_{n=0}^{\infty} a_n (x x_0)^n$.
 - 2. The radius of convergence of this series is at least as large as the minimum of the radii of convergence of the Taylor series at x_0 of functions $p(x) := \frac{Q(x)}{P(x)}$ and $q(x) := \frac{R(x)}{P(x)}$.

$$R(y(x)) \ge \min \{R(p(x)), R(q(x))\}$$

Title: Apr 30-1:41 PM (Page 3 of 6)

EXAMPLE 11. Determine a lower bound for the radius of convergence of series solutions about each given point of the following equation:

a)
$$xy'' + y' + xy = 0$$
 about $x_0 = 1$ (as in Example 8) Note that $x_0 = 1$ is ordinary point $y'' + \frac{1}{x}y' + y = 0$

$$\Rightarrow P(x) = \frac{1}{x}$$

$$x = 0 \text{ (s singular point}$$

$$R(p) = 1$$

$$R(y) \geqslant \min\{1, \infty\} \Rightarrow R(y) \geqslant 1$$

Title: Apr 30-1:42 PM (Page 4 of 6)

b)
$$(x^2 + 2x + 2)y'' + xy' + 4y = 0$$
 about

$$P(x) = \frac{x}{x^2 + 2x + 2}$$

Singular points of p and q are

$$2eroes of denominator in this case$$

$$x^2 + 2x + 2 = (x + 1)^2 + 1 = 0$$

$$x = -1 \pm i$$

i) $x_0 = 0$

$$R = \sqrt{2} = R(p) = R(q)$$

$$R(y) \ge \sqrt{2}$$

iii) $x_0 = -1$

$$R(y) \ge \sqrt{2}$$

$$R(y) \ge \sqrt{2}$$

iii) $x_0 = -1$

$$R(y) \ge \sqrt{2}$$

$$R(y) \ge \sqrt{2}$$

$$R(y) \ge \sqrt{2}$$

$$R(y) \ge \sqrt{2}$$

Title: Apr 30-1:43 PM (Page 5 of 6)

EXAMPLE 5. Given

$$\sin^2 x \, y'' + x^2 y' + (1 - \cos x)y = 0$$

$$p(x) = \frac{x^2}{\sin^2 x} = \left(\frac{x}{\sin^2 x}\right)^2 = \left(\frac{x}{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots}\right)^2 = \frac{x^2}{x^2 \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots\right)^2}$$

$$q(x) = \frac{1 - \cos x}{\sin^2 x} = \frac{1 - \cos x}{1 - \cos^2 x} = \frac{1 - \cos x}{(1 - \cos x)(1 + \cos x)} = \frac{1}{1 + \cos x}$$

a) is
$$x_0 = 0$$
 ordinary or singular?

b) is
$$x_0 = 2\pi$$
 ordinary or singular?

Title: Apr 30-1:43 PM (Page 6 of 6)