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Linear HOMOGENEOUS ODE of second order

8. Question: Can the function y = sin(#?) be a solution on the interval (—=1,1) of a second

order linear homogeneous equation with continuous coefficients?

9. Consider a linear homogeneous ODE
y' +pt)y +q(t)y =0 (2)
with coefficients p and ¢ continuous in an interval .
10. Superposition Principle
e Sum y;(t) + yo(t) of any two solutions y;(¢) and y,(¢) of (2) is itself a solution.

e A scalar multiple Cy(t) of any solution y(t) of (2) is itself a solution.

COROLLARY 3. Any linear combination Cyy;(f) + Cays(t) of any two solutions y,(t)
and ys(t) of (2) is itself a solution.
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11. Why Superposition Principle is important? Omnce two solutions of a linear homoge-

neous equation are known, a whole class of solutions is generated by linear combinations of
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12. WRONSKIAN of the functions 1 (t) and ya(t):

W (g1, 92)(8) = |24
Y
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13. Suppose that y,(¢) and ys(t) are two differentiable solutions of (2) in the interval I such that

W(yy,y2)(t) # 0 somewhere in I, then every solution is a linear combination of y;(t) and

y2(t).

In other words, the family of solutions y(t) = Ciy(t) + Csys(t) with arbitrary coefficients

C, and C5 includes every solution of (2) if and only if there is a points ¢y where Wy, y5)

is not zero. In this case the pair (y;(t), y2(¢)) is called the fundamental set of solutions of

(2).
‘ REMARK 4. Wronskian W (y;,¥2)(t) (of any two solutions y;(t) and y»(t) of (2) )either is

o | zero for all t or else is never zero.
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14. Confirm that sinz and cosz are solutions of Yy +y = OLJThen solve the IVP
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Appendix: Facts from Algebra
L e FACT 1: Cramer’s Rule for solving the system of equations

a1r + by =y
agr + by = o

The rule says is that if the determinant of the coefficient matrix is not zero, i.e.

a; by

7 0,

as  bo

then the system has a unique solution (z,y) given by
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e FACT 2: If determinant of the coefficient matrix i1s zero then either there 1s no solution, or there are

infinitely many solutions.

e FACT 3. The homogeneous system of linear equations

ajx+by=0
aixr + by =0
always has the “trivial” solution (z,y) = (0,0). By Cramer’s rule this is the only solution if the

determinant of the coeficient matrix is not zero.

e FACT 4: If determinant of the coefficient matrix of homogeneous system of linear equations is zero

then there are infinitely many nontrivial solutions (z,y) # (0, 0).
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2. Use Facts 1-4 to determine if each the following systems of linear equations has one solution, no solutio

infinitely many solutions. Then find the solution/s (if any).

2z + 3y
(a) _ _
r—y=

1 -1

K s\ = -3 -3=-5§%0
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B 1=
22y —Al
3T+ 3y =
S —
AE = Jp —
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