Linear HOMOGENEOUS ODE of second order

8. Question: Can the function $y=\sin \left(t^{2}\right)$ be a solution on the interval $(-1,1)$ of a second order linear homogeneous equation with continuous coefficients?
9. Consider a linear homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

with coefficients p and q continuous in an interval I.
10. Superposition Principle

- Sum $y_{1}(t)+y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2) is itself a solution.
- A scalar multiple $C y(t)$ of any solution $y(t)$ of (2) is itself a solution.

COROLLARY 3. Any linear combination $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2) is itself a solution.

$$
\begin{aligned}
y_{1}=\cos t \quad y_{2} & =5 \cos t \\
y=c_{1} y_{1}+c_{2} y_{2} & =c_{1} \cos t+5 c_{2} \cos t \\
& =C \cos t
\end{aligned}
$$

11. Why Superposition Principle is important? Once two solutions of a linear homogeneous equation are known, a whole class of solutions is generated by linear combinations of these two.

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

Ivf:

$$
\begin{aligned}
& y^{\prime \prime}+p(t) y^{\prime}+q(t)=y^{\prime}\left(t_{0}\right)=V_{0}\left(1^{*}\right) \\
& y\left(t_{0}\right)=y_{0},
\end{aligned}
$$

Assume that $y_{1}(t)$ and $y_{2}(t)$ are particular solutions of (1). By Superposition Principle

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) \tag{2}
\end{equation*}
$$

is also solution of (1).
(2) is solution of IV P if and only if there exist C_{1} and C_{2} such that solution (2) satisfies the initial conditions $\left(1^{*}\right)$.

$$
\begin{aligned}
& \text { (2) satisfies the init } \\
& \begin{array}{l|l}
y\left(t_{0}\right) & c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
\hline y^{\prime}\left(t_{0}\right) & c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=V_{0} \\
\text { CRanmeR's Rule }
\end{array}
\end{aligned}
$$

By Cramer's Rule

$$
\begin{aligned}
& \text { By CRamer's Rule } \\
& \left.\begin{array}{l}
\text { W }\left(y_{1}, y_{2}\right)\left(t_{0}\right)=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right| \neq 0 \begin{array}{c}
\text { then the } \\
\text { above system }
\end{array} \\
\text { has unique } \\
\text { hronskinN } \\
\begin{array}{ll}
y_{0} & y_{2}(t) \\
\text { solution }
\end{array} \\
k_{1}, c_{2}
\end{array}\right)
\end{aligned}
$$

$$
C_{1}=\frac{\left|\begin{array}{ll}
y_{0} & y_{2}(t) \\
v_{0} & y_{2}^{\prime}(t)
\end{array}\right|}{W\left(y_{1}, y_{2}\right)\left(t_{0}\right)} \quad \text { and } C_{2}=\left\lvert\, \frac{\left|\begin{array}{cc}
y_{1}\left(t_{0}\right) & y_{0} \\
y_{1}^{\prime}\left(t_{0}\right) & v_{0}
\end{array}\right|}{W\left(y_{1}, y_{2}\right)\left(t_{0}\right)}\right.
$$

12. WRONSKIAN of the functions $y_{1}(t)$ and $y_{2}(t)$:

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|
$$

13. Suppose that $y_{1}(t)$ and $y_{2}(t)$ are two differentiable solutions of (2) in the interval I such that $W\left(y_{1}, y_{2}\right)(t) \neq 0$ somewhere in I, then every solution is a linear combination of $y_{1}(t)$ and $y_{2}(t)$.

In other words, the family of solutions $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ with arbitrary coefficients C_{1} and C_{2} includes every solution of (2) if and only if there is a points t_{0} where $W\left(y_{1}, y_{2}\right)$ is not zero. In this case the pair $\left(y_{1}(t), y_{2}(t)\right)$ is called the fundamental set of solutions of (2).
\int REMARK 4. Wronskian $W\left(y_{1}, y_{2}\right)(t)$ (of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2))either is zero for all t or else is never zero.

For example if $y_{1}=\cos t, y_{2}=5 \cos t$ then

$$
\left.\begin{array}{l}
\text { For example if } y_{1}=\cos t, y_{2}=5 \cos t \\
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{rr}
\cos t & 5 \cos t \\
-\sin t & -5 \sin t
\end{array}\right|=-5 \cos t \sin t-(-5 \cos t \sin t) \\
\qquad\left\{y_{11} y_{2}\right\}=\{\cos t, 5 \cos t\} \\
\text { is NOT } \\
\text { fundamental } \\
\text { set }
\end{array}\right\} \begin{array}{r}
\text { And thus } \begin{array}{r}
c_{1} \cos t+c_{2} \cdot 5 \cos t \text { is not } \\
\text { general solution } \\
\text { of ODE of } 2 n d \text { order. }
\end{array}
\end{array}
$$

14. Confirm that $\sin x$ and $\cos x$ are solutions of $y^{\prime \prime}+y=0$. Then solve the IVP

$$
\left.\begin{array}{l}
\begin{array}{l}
y^{\prime \prime}+y=0, \quad y(\pi)=0, \quad y^{\prime}(T)=-5 \\
y_{1}^{\prime \prime}+y_{1}= \\
y_{1}(x)=\sin x
\end{array} \\
y_{2}(x)=\cos x \Rightarrow \sin ^{\prime \prime}+\sin x=-\sin x+\sin x=0_{0} \\
0
\end{array}\right)
$$

Solve IUP. Determine whether $\left\{y_{1}, y_{2}\right\}$ is fundamental $\operatorname{set}(\Leftrightarrow W$ RONSK/AN $\Rightarrow 0)$.

$$
\begin{aligned}
& \operatorname{set}\left(\Leftrightarrow\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|\right.=-\sin ^{2} x-\cos ^{2} x \\
&=-\left(\sin ^{2} x+\cos ^{2} x\right)=-1 \neq 0 \\
&\left\{y_{1}, y_{2}\right\}=\{\sin x, \cos x\} \text { is fundum. set } \\
& H
\end{aligned}
$$

Solve IVP: Find C_{1}, C_{2} such that

$$
y(t)=c_{1} \sin t+c_{2} \cos t
$$

satisfies initial conditions

$$
y(\pi)=0
$$

$$
y^{\prime}(\pi)=-5 \quad y_{y}^{\prime}=c_{1} c_{2} \operatorname{sos} t-\sin t
$$

$$
\begin{array}{ll}
y(\pi)=c_{1} \cdot 0+c_{2}(-1)=0 \Rightarrow c_{2}=0 \\
c_{2} \cdot 0=-5 \Rightarrow c_{1}=5
\end{array}
$$

$$
\begin{aligned}
& y(\pi)=c_{1} \cdot 0+c_{2} \cdot c_{1}=5 \\
& y^{\prime}(\pi)=-c_{1}+c_{2} \cdot 0=-5(t)=5 \sin t
\end{aligned}
$$

Solution of IVP: $y(t)=5 \sin t$

Appendix: Facts from Algebra

1. - FACT 1: Cramer's Rule for solving the system of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

The rule says is that if the determinant of the coefficient matrix is not zero, i.e.

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0,
$$

then the system has a unique solution (x, y) given by

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- FACT 2: If determinant of the coefficient matrix is zero then either there is no solution, or there are infinitely many solutions.
- FACT 3. The homogeneous system of linear equations

$$
\begin{aligned}
& a_{1} x+b_{1} y=0 \\
& a_{1} x+b_{2} y=0
\end{aligned}
$$

always has the "trivial" solution $(x, y)=(0,0)$. By Cramer's rule this is the only solution if the determinant of the coefficient matrix is not zero.

- FACT 4: If determinant of the coefficient matrix of homogeneous system of linear equations is zero then there are infinitely many nontrivial solutions $(x, y) \neq(0,0)$.

2. Use Facts 1-4 to determine if each the following systems of linear equations has one solution, no solutio infinitely many solutions. Then find the solutions (if any).
(a)
(b) $\begin{gathered}2 x-2 y=4 \\ x-y=7\end{gathered}$
(c) $\begin{aligned} 2 x-2 y & =0 \\ 3 x+3 y & =0\end{aligned}$
(d) $\begin{aligned} 2 x-2 y & =0 \\ 3 x-3 y & =0\end{aligned}$
