10. Linear homogeneous equations of second order with constant coefficients the case of distinct roots of characteristic equation (sec. 3.1)

1. PROBLEM: Find general solutions of linear homogeneous equation

$$ay'' + by' + cy = 0 \tag{1}$$

with constant real coefficients a, b, and c.

2. Recall that

- By Superposition Principle: Any linear combination C₁y₁(t) + C₂y₂(t) of any two solutions y₁(t) and y₂(t) of (1) is itself a solution.
- The family of solutions $y(t) = C_1y_1(t) + C_2y_2(t)$ with arbitrary coefficients C_1 and C_2 includes every solution of (1) if and only if there is a points t_0 where $W(y_1, y_2)$ is not zero. In this case the pair $(y_1(t), y_2(t))$ is called the **fundamental set** of solutions of (1).

Title: Feb 8-8:58 AM (1 of 4)

3. To find a fundamental set for the equation (1) note that the nature of the equation suggests that
it may have solutions of the form

$$y = e^{rt}$$
.

Plug in and get so called **characteristic equation** of (1):

$$ar^2 + br + c = 0. (2)$$

$$ay''+by'+cy=0$$

$$y=e^{rt}$$

$$y''=re^{rt}$$

$$y''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$y'''=(re^{rt})=re^{rt}$$

$$quadratic equation$$

Note that the characteristic equation can be determined from its differential equation simply by replacing $y^{(k)}$ with with r^k .

4. Solve
$$y'' - 16y = 0$$
.

4. Solve
$$y'' - 16y' = 0$$
.

$$y'' - 16y' = 0$$

Char. equation $r^2 - 16r = 0$

$$r(r - 16) = 0 \implies r_1 = 0 \implies y_1 = e^{r_1 t} = e^{e_1} r_2 = 16 \implies y_2 = e^{r_2 t} = 16t$$

$$r_2 = 16 \implies y_2 = e^{r_2 t} = 16t$$

(3)
$$\{y_{11}, y_{2}\} = \{1, e^{16t}\}$$
 is fundamental set $y(t) = C_{1} + C_{2}e^{16t}$

Title: Feb 8-9:00 AM (3 of 4)

5. Fact from Algebra: The quadratic equation
$$ar^2 + br + c = 0$$
 has roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

which fall into one of 3 cases:

- two distinct real roots $r_1 \neq r_2$ (in this case $D = b^2 4ac > 0$) [section 3.1]
- two complex conjugate roots $r_1=\overline{r_2}$ (in this case $D=b^2-4ac<0$) [section 3.3]
- ullet two equal real roots $r_1=r_2$ (in this case $D=b^2-4ac=0$) [section 3.4]

Case 1: Two distinct real roots $(D = b^2 - 4ac > 0)$

6. Two distinct real roots r_1 and r_2 of the characteristic equation give us two solutions

Is this a fundamental set of solutions?

$$W(y_{11}y_{2}) = \begin{vmatrix} e & r_{1}t & r_{2}t \\ r_{1}e^{r_{1}t} & r_{2}e^{r_{2}t} \end{vmatrix} = r_{2}e^{r_{1}t}e^{r_{2}t}e^{r_{1}t}e^{r_{2}t}e^{r_{1}t}e^{r_{2}t$$

Title: Feb 8-9:01 AM (4 of 4)