32: Series of Solutions near an Ordinary Point (sections 5.2 and 5.3)

We consider differential equations of the type

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{1}
\end{equation*}
$$

DEFINITION 1. A point x_{0} is called an ordinary point of differential equation (1) if the functions $p(x):=\frac{Q(x)}{P(x)}$ and $q(x):=\frac{R(x)}{P(x)}$ are analytic at x_{0}, maybe after defining $p\left(x_{0}\right)$ and $q\left(x_{0}\right)$ appropriately (i.e. by continuity). Otherwise, the point x_{0} is called a singular point of differential equation (1).

EXAMPLE 2. If the functions $P(x), Q(x)$, and $R(x)$ are analytic and $P\left(x_{0}\right) \neq 0$, then x_{0} is an ordinary point of (1).

REMARK 3. In general, if $P\left(x_{0}\right)=0$ it does not mean that x_{0} is a singular point of (1), because it might be that also $Q\left(x_{0}\right)=0$ and $R\left(x_{0}\right)=0$ and the functions $\frac{Q(x)}{P(x)}, \frac{R(x)}{P(x)}$ might be defined at x_{0} by continuity (namely $\lim _{x \rightarrow x_{0}} \frac{Q(x)}{P(x)}$ and $\lim _{x \rightarrow x_{0}} \frac{R(x)}{P(x)}$ may exist and be finite).

EXAMPLE 4. Given

$$
\left(1-x^{2}\right) y^{\prime \prime}+\left(x^{2}+x-2\right) y^{\prime \prime}+\left(x^{3}-1\right) y=0
$$

a) is $x_{0}=1$ ordinary or singular?
b) is $x_{0}=-1$ ordinary or singular?

EXAMPLE 5. Given

$$
\sin ^{2} x y^{\prime \prime}+x^{2} y^{\prime}+(1-\cos x) y=0
$$

a) is $x_{0}=0$ ordinary or singular?
b) is $x_{0}=2 \pi$ ordinary or singular?

THEOREM 6. 1. If x_{0} is an ordinary point of differential equation (1), then any solution $y(x)$ of (1) is analytic at $x=x_{0}$, i.e can be found as a power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.
2. The radius of convergence of this series is at least as large as the minimum of the radii of convergence of the Taylor series at x_{0} of functions $p(x):=\frac{Q(x)}{P(x)}$ and $q(x):=\frac{R(x)}{P(x)}$.

REMARK 7. The coefficients a_{n} of the series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ with $n \geq 2$ are uniquely determined by the first two coefficients a_{0} and a_{1}. Moreover, a_{n} are expressed linearly in terms of a_{0} and a_{1} so that

$$
y(x)=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where $y_{1}(x)$ is the solution satisfying the initial conditions $y_{1}\left(x_{0}\right)=1, y_{1}^{\prime}\left(x_{0}\right)=0$ and $y_{2}(x)$ is the solution satisfying the initial conditions $y_{2}\left(x_{0}\right)=0, y_{2}^{\prime}\left(x_{0}\right)=1$.

EXAMPLE 8. Given differential equation

$$
x y^{\prime \prime}+y^{\prime}+x y=0 .
$$

a) Seek power series solutions of this equation about $x_{0}=1$: find the recurrence relation for coefficients of the power series about $x_{0}=1$ representing a solution (in general, a recurrence relation is a relation expressing the nth coefficients a_{n} in terms of some previous ones).
b) Find the first five terms in the power expansion about $x_{0}=1$ of the solution of the equation (1) satisfying initial conditions $y(1)=3, y^{\prime}(1)=1$.

Radius of convergence as the minimal distance to singularities.
There is a more elegant way to find the radius of convergence of the Taylor series at x_{0} of the analytic function f rather than calculating the coefficients of this Taylor series (i.e. derivatives of any order of f at x_{0}). For this we pass to the complex plane.

Assume for simplicity that $f(x)=\frac{Q}{P}$, where Q and P are polynomials and all common linear factors (in general with complex coefficients) of Q and P are canceled. Then f is analytic at x_{0} if and only if $P\left(x_{0}\right) \neq 0$ and the radius of convergence of the Taylor series about x_{0} is equal to the distance to the nearest complex zero of P.

EXAMPLE 9. Given $f(x)=\frac{1}{1+x^{2}}$ what is the radius of convergence of the Taylor series of f
a) around $x_{0}=0$
b) around $x_{0}=1$
c) around $x_{0}=2$

REMARK 10. Note that the function $f(x)=\frac{1}{1+x^{2}}$ of the previous example is defined for all real x, so we see the "problem" (non-convergence of Taylor series for $|x|>1$) only when passing to the complex plane. This is another example when the use of complex numbers is very natural and helpful.

EXAMPLE 11. Determine a lower bound for the radius of convergence of series solutions about each given point of the following equation:
a) $x y^{\prime \prime}+y^{\prime}+x y=0 \quad$ about $x_{0}=1$ (as in Example 8)
b) $\left(x^{2}+2 x+2\right) y^{\prime \prime}+x y^{\prime}+4 y=0$ about
i) $x_{0}=0$
ii) $x_{0}=-1$
iii) $x_{0}=-3$

