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ABSTRACT

The Mukhin-Tarasov-Varchenko Theorem (previously the Shapiro Conjecture) asserts that a
Schubert problem has all solutions distinct and real if the Schubert varieties involved osculate
a rational normal curve at real points. When conjectured, it sparked interest in real osculating
Schubert calculus, and computations played a large role in developing the surrounding theory.
Our purpose is to uncover generalizations of the Mukhin-Tarasov-Varchenko Theorem, proving
them when possible. We also improve the state of the art of computationally solving Schubert
problems, allowing us to more effectively study ill-understood phenomena in Schubert calculus.

We use supercomputers to methodically solve real osculating instances of Schubert problems.
By studying over 300 million instances of over 700 Schubert problems, we amass data significant
enough to reveal possible generalizations of the Mukhin-Tarasov-Varchenko Theorem and com-
pelling enough to support our conjectures. Combining algebraic geometry and combinatorics,
we prove some of these conjectures. To improve the efficiency of solving Schubert problems, we
reformulate an instance of a Schubert problem as the solution set to a square system of equations
in a higher-dimensional space.

During our investigation, we found the number of real solutions to an instance of a symmetrically
defined Schubert problem is congruent modulo four to the number of complex solutions. We
proved this congruence, giving a new invariant in enumerative real algebraic geometry. We also
discovered a family of Schubert problems whose number of real solutions to a real osculating
instance has a lower bound depending only on the number of defining flags with real osculation
points.

We conclude that our method of computational investigation is effective for uncovering phe-
nomena in enumerative real algebraic geometry. Furthermore, we point out that our square
formulation for instances of Schubert problems may facilitate future experimentation by allow-
ing one to solve instances using certifiable numerical methods in lieu of more computationally
complex symbolic methods. Additionally, the methods we use for proving the congruence mod-
ulo four and for producing an unexpected square system of equations are both quite general,
and they may be of use in future projects.
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CHAPTER I
INTRODUCTION

The fundamental theorem of algebra states that the number of complex roots of a univariate
polynomial is the degree of the polynomial, counting multiplicities. Bézout’s Theorem gives the
number of points of intersection of two projective plane curves, thereby generalizing the funda-
mental theorem of algebra. Enumerative algebraic geometry studies the further generalization
of counting solutions to polynomial systems with geometric meaning. The most elegant results
in enumerative algebraic geometry, such as the fundamental theorem of algebra and Bézout’s
Theorem, depend on working over an algebraically closed field, so they are of limited use in
applications which require information about real solutions.

One real analogue to the fundamental theorem of algebra is Descartes’s rule of signs, which
bounds the number of positive roots of a univariate polynomial with coefficients in R. With
very little work, one may use the rule of signs to find an upper bound R on the number r of
real roots of a real polynomial. Since nonreal roots of real polynomials come in pairs, we have
r ≡ R mod 2.

The inelegance of counting the real roots of a polynomial compared to counting complex roots is
typical of statements in enumerative real algebraic geometry. This makes real statements harder
to detect and less attractive to prove. As a result, the enumerative theory of real algebraic
geometry is not as well formed as its complex companion.

With the use of computers we may now engage in a study of enumerative real algebraic geometry
that is long overdue. One example of success in this field is the Shapiro Conjecture, made by
the brothers Boris and Michael Shapiro in 1993. The conjecture was refined and supported by
computational data collected by Sottile [39]. Eremenko and Gabrielov proved partial results
[10], and the full conjecture for the real Schubert calculus of Grassmannians was proved by
Mukhin, Tarasov, and Varchenko [28, 29]. The Mukhin-Tarasov-Varchenko Theorem states that
a Schubert problem has all solutions real and distinct if the Schubert varieties involved are defined
with respect to distinct real flags osculating a single real parametrized rational normal curve.
Thus the number of real solutions to the corresponding system of real polynomials depends only
on the Schubert problem, and this number may be obtained using the Littlewood-Richardson
rule.

Computational projects [12, 14, 33] have suggested generalizations to the Mukhin-Tarasov-
Varchenko Theorem, some of which now have been proven [10, 19, 28, 29]. In this thesis, we
describe a computational project extending the study by Eremenko and Gabrielov [9] of lower
bounds on the number of real solutions to certain Schubert problems. Eremenko and Gabrielov
computed a topological degree which gives a lower bound for the number of real points in an
intersection of osculating Schubert varieties when the intersection is stable under complex con-
jugation and at most two of the Schubert varieties are not hypersurfaces. We solved over 339
million instances of 756 Schubert problems, including those involving non-hypersurface Schubert
varieties, to investigate these Eremenko-Gabrielov type lower bounds. For Schubert problems
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involving at most two non-hypersurface Schubert varieties, we tested the sharpness of known
bounds.

During our computational investigation, we observed that the number of real solutions to a real
Schubert problem with certain symmetries is congruent modulo four to the number of complex
solutions. This is stronger than the usual congruence modulo two arising from nonreal solutions
coming in complex conjugate pairs. While this congruence was unexpected, the underlying
reason is simple enough: there are two involutions acting on the solutions to a real symmetric
Schubert problem, complex conjugation and a Lagrangian involution. When subtle nondegen-
eracy conditions are satisfied, the involutions are independent. This gives Theorem IV.3.6, the
first of our two main results.

Computational complexity can be a serious obstacle when studying systems of equations, and
even more so when we investigate systems by the hundreds of millions. As with previous large-
scale computations, we were limited by the severe complexity of symbolic computation [13, 27].
Numerical homotopy methods provide an alternative for solving problems which are infeasible
by Gröbner basis methods in characteristic zero, but the approximate solutions produced do not
come with a certificate verifying the solutions. There is software which may be used to certify
approximate solutions [17], but the algorithms used require a square polynomial system. That
is, the number of equations must equal the number of variables, and there must be finitely many
solutions. Like many other problems in algebraic geometry, Schubert problems are traditionally
not defined by a square system.

We give a primal-dual formulation of a Schubert problem which presents it as a square system
in local coordinates. This reformulation is presented in our second main result, Theorem V.2.11,
and it allows one to certify approximate solutions obtained numerically.

In Chapter II, we give definitions needed for Schubert calculus and a brief history of conjectures
and theorems in real Schubert calculus. In Chapter III, we describe the computational project
extending the study of Eremenko-Gabrielov type lower bounds. In Chapter IV, we prove a new
theorem in enumerative real algebraic geometry, the congruence modulo four discovered in the
computational project. In Chapter V, we give a method for formulating a general Schubert
problem as a square system.

2



CHAPTER II
REAL SCHUBERT CALCULUS

Schubert calculus is the study of linear spaces having special position with respect to fixed but
general linear spaces. We provide background and describe a series of surprising conjectures and
theorems about real solutions to problems in Schubert calculus. Large computations played a
big role in uncovering conjectures and motivating theorems in this area.

II.1 Preliminaries

We assume knowledge of [5] as a basic reference. We are interested in enumerative problems
in real Schubert calculus which are solved by counting real points in a variety. We provide
background which is useful for counting these points when the associated ideal is generated by
a set of real multivariate polynomials. The first step is to write the generators in a standard
form using a Gröbner basis.

Let x = (x1, . . . , xq) denote variables and a = (a1, . . . , aq) denote an exponent vector so that
xa := x1

a1 · · ·xqaq is a monomial. A term order on C[x] is a well-ordering of monomials of C[x],
for which 1 is minimal, and which respects multiplication. The lexicographic term order ≺ on
C[x] is the term order, such that xa ≺ xb if the last nonzero entry of b− a is positive. We give
some comparisons for q = 3,

1 ≺ x1 ≺ x9
1 ≺ x17

1 ≺ x2 ≺ x2
2x

6
1 ≺ x3

2 ≺ x3 ≺ x3x1.

Let f(x) ∈ C[x] be a multivariate polynomial. The initial term in≺ f of f(x) is the maximal
term of f with respect to ≺. For example, if f(x) = 4 − 2x1 + x2 + 3x3 and g(x) = x2x

9
1 +

3x2
2x1 + 2x5

2 − 5x3x1, then in≺ f = 3x3 and in≺ g = −5x3x1.

This definition extends to ideals. The initial ideal in≺ I of an ideal I ⊂ C[x] is the ideal generated
by the initial terms of elements of I,

in≺ I := (in≺ f | f ∈ I) .

A Gröbner basis B = (g1, . . . , gN) of an ideal I is a generating set for I with the property that
(in≺ g1, . . . , in≺ gN) is a generating set of in≺ I. There are efficient algorithms implemented in
the computer algebra system Singular, which calculate Gröbner bases [6].

Suppose f = (f1, . . . , fp) is a system of multivariate polynomials in the variables x with finitely
many common zeros and let I be the ideal generated by f . An eliminant of I is a univariate
polynomial g(x1) ⊂ I of minimal degree. This implies that the roots of g1 are the x1-values of
the points in the variety V(I) ⊂ Cq.

If V(I) is zero-dimensional, then the degree d of I is the number of points in V(I), counting
multiplicity. (Here, the multiplicity of a point in a zero-dimensional scheme is the usual Hilbert-
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Samuel multiplicity.) In this case, if the points of V(I) have distinct x1-values, then an eliminant
g of I has degree d. An eliminant may be calculated using a Gröbner basis with respect to the
lexicographic term order ≺. Indeed, one of the generators will be an eliminant.

A reduced lexicographic Gröbner basis of I is a Gröbner basis B = (b1, . . . , bN) with respect
to the lexicographic term order ≺ such that in≺ bi does not divide any term of bj for distinct
i, j ≤ N . Given a Gröbner basis with respect to ≺, one may obtain a reduced lexicographic
Gröbner basis by iteratively reducing the generators using the Euclidean algorithm.
Proposition II.1.1 (The Shape Lemma [2]). Let I ⊂ C[x] be an ideal such that V(I) is zero-
dimensional. Suppose f is a generating set for I and B is a reduced lexicographic Gröbner
basis of I obtained by applying Buchberger’s algorithm to f . If the eliminant g ∈ B has degree
d = deg(I) and g is square-free, then

B = (g(x1), x2 − g2(x1), . . . , xq − gq(x1)) ,

with deg(gj) < d for j > 1.

Proof. The polynomial g generates I ∩ C[x1], so 1, x, . . . , xd−1 are standard monomials. The
number of standard monomials of I with respect to ≺ is deg(I), so there are no other standard
monomials. The generators in B have initial terms xd1, x2, . . . , xq, so reducing the generators
gives a Gröbner basis of the stated form.

For each root r1 of the eliminant g ∈ B, there is a unique point r := (r1, g2(r1), . . . , gq(r1)) ∈
V(I). Therefore, the projection π : Cq → C given by (c1, . . . , cq) 7→ c1 sends the points of V(I)
to the roots of g. When I has a generating set of real polynomials, Buchberger’s algorithm
produces a Gröbner basis of real polynomials. Using this Gröbner basis, one obtains a reduced
Gröbner basis B whose generators are real polynomials. Thus the Shape Lemma asserts that
r1 is real in and only if r is real. This allows us to use an eliminant to calculate the number of
real points in a zero-dimensional variety. The following corollary to the Shape Lemma has been
useful in computational experiments in Schubert calculus [12, 14, 33].
Corollary II.1.2. Suppose the hypotheses of Proposition II.1.1 are satisfied. If f is real then
the number of real points in V(I) is equal to the number of real roots of g.

If the restriction of the projection π to V(I) is not injective, then one may permute the variables
x or use more sophisticated methods to rectify this [32]. To use Corollary II.1.2, we require an
algorithm for counting the real roots of g, which is based on sequences of polynomials. Let y
denote the minimal variable in x after reordering.
Definition II.1.3. If f1, f2 ∈ C[y] are univariate polynomials, the Sylvester sequence Syl(f1, f2)
is the subsequence of nonzero entries of the recursively defined sequence,

fj := −remainder(fj−2, fj−1) for j > 2 .

Here, the remainder is calculated via the Euclidean algorithm, so Syl(f1, f2) is finite with final
entry fs = ± gcd(f1, f2).
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Definition II.1.4. If f ∈ C[y] is a univariate polynomial, the Sturm sequence of f ∈ C[y] is
Sturm(f) := Syl(f, f ′).

We point out that while none of the entries of Sturm(f) are identically zero, its evaluation
Sturm(f(a)) at a point a ∈ C may contain zeros. We are concerned with the number of sign
changes that occur between the nonzero entries.
Definition II.1.5. Suppose f ∈ C[y] is a univariate polynomial, a ∈ C is a complex number,
Σa is the subsequence of nonzero entries of Sturm(f(a)), and l is the number of entries in Σa.
For j ∈ [l − 1], the product Σa

jΣ
a
j+1 is negative if and only if the jth and (j + 1)th entries of Σa

have different signs. The variation of f at a is obtained by counting sign alternations,

var(f, a) := #{j ∈ [l − 1] | Σa
jΣ

a
j+1 < 0} .

Theorem II.1.6 (Sturm’s Theorem). Let f ∈ R[y] be a univariate polynomial and a, b ∈ R with
a < b and f(a), f(b) 6= 0. Then the number of distinct zeros of f in the interval (a, b) is the
difference var(f, a)− var(f, b).

The proof is standard. One treatment may be found in [1, p. 57]. The bitsize of coefficients
in a Sturm sequence may grow quickly. Implementations may control this growth by using
a normalized Sturm-Habicht sequence. Each entry of a Sturm-Habicht sequence is a positive
multiple of the corresponding entry of a Sturm sequence, so var(f, a) may be calculated via
the normalized sequence. The library rootsur.lib written by Enrique A. Tobis for Singular

implements algorithms from [1] to compute a Sturm-Habicht sequence of a univariate polynomial
to count its distinct real roots.

II.2 The Grassmannian

We fix positive integers k < n and a complex linear space V of dimension n. The choice of
standard basis e identifies V with Cn, giving it a real structure. Complex conjugation v 7→ v is
an involution on V .
Definition II.2.1. The Grassmannian Gr(k, V ) of k-planes in V is the set of k-dimensional
linear subspaces of V ,

Gr(k, V ) := {H ⊂ V | dim(H) = k} .

The automorphism v 7→ v preserves the dimension of subspaces, so H ∈ Gr(k, V ) implies
H ∈ Gr(k, V ).

Let Matk×n denote the set of k × n matrices with complex entries. The determinant of an i× i
submatrix of M ∈ Matk×n is called an i× i minor of M . The determinant of a maximal square
submatrix of M is called a maximal minor of M .
Definition II.2.2. The Stiefel manifold St(k, n) is the set of full-rank k × n matrices,

St(k, n) := {M ∈ Matk×n | rank(M) = k} .

Since rank(M) < k is a closed condition (given by the vanishing of minors), St(k, n) is a dense
open subset of a vector space and thus a smooth manifold.
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The Stiefel manifold parametrizes the Grassmannian by associating P ∈ St(k, n) to its row space
H ∈ Gr(k, V ). There is a left action of GL(k,C) on St(k, n) given by multiplication. Since the
set of all points in St(k, n) with row space H is the GL(k,C) orbit of P , St(k, n) is a GL(k,C)
fiber bundle over Gr(k, V ). Complex conjugation extends to matrices, and rowspace(P ) = H
implies rowspace(P ) = H.
Definition II.2.3. A complex projective algebraic variety X is called a real variety if X = X.

Note that a nonempty real variety need not contain any closed points with residue field R. For
example, the curve defined by x2 + y2 + z2 = 0 in P2 is real, but contains no closed points with
residue field R.
Definition II.2.4. Let ∧ denote the usual exterior product in V , and

∧k V the kth exterior
power of V . The product v1 ∧ · · · ∧ vk ∈

∧k V is alternating, since transposing vi and vi+1 is
equivalent to multiplication by −1. If H is a k-plane then

∧kH is a line through the origin in∧k V . Thus
∧kH is a point in projective space, and we have a well-defined map

Φ: Gr(k, V ) −→ P(
∧k V ) ,

H 7−→
∧kH

called the Plücker map. We call the space P(
∧k V ) Plücker space.

Definition II.2.5. Let
(

[n]
k

)
denote the set of sublists of [n] := {1, 2, . . . , n} with k entries.

Definition II.2.6. The basis e of V induces a basis of
∧k V whose generators are

eα := eα1 ∧ · · · ∧ eαk

for α ∈
(

[n]
k

)
. The coordinates [ pα | α ∈

(
[n]
k

)
] dual to this basis are called Plücker coordinates.

For H ∈ Gr(k, V ) we write

Φ(H) =
∑

α∈([n]
k )

pα(H)eα ,

with pα(H) ∈ C. We call pα(H) the αth Plücker coordinate of H.

The Plücker coordinates are closely related to the parametrization of Gr(k, V ) given by St(k, n).
Suppose Q ∈ St(k, n) has row space H ∈ Gr(k, V ) and α ∈

(
[n]
k

)
. Let Qα denote the maximal

minor of Q involving columns α1, . . . , αk. Then [Qα | α ∈
(

[n]
k

)
] and [ pα(H) | α ∈

(
[n]
k

)
] are the

same point in Plücker space. The proofs of the two following propositions are based partially
on [23].
Proposition II.2.7. The Plücker map is injective.

Proof. Let Q ∈ St(k, n) be a matrix with row space H ∈ Gr(k, V ). The k-plane H has some
nonzero Plücker coordinate, so without loss of generality p[k](H) 6= 0. Thus Q may be written in
block form [A|B] where A is a k×k invertible matrix. Multiplying, we have A−1Q = [Idk |A−1B],
which gives another matrix with row space H.

For i ∈ [k] and j ∈ {k + 1, . . . , n} we define α(i, j) := (1, . . . , î, . . . , k, j). We may express the
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(i, j)th entry of A−1Q as a maximal minor

(A−1Q)ij = (−1)k−i(A−1Q)α(i,j) = pα(i,j)(H) .

Since the maximal minors of A−1Q are the Plücker coordinates [ pα(H) | α ∈
(

[n]
k

)
], H may

be recovered from the Plücker coordinates [ pα(H) | α ∈
(

[n]
k

)
]. Therefore, the Plücker map is

injective.

In the course of the proof, we used an affine cover of Plücker space. To formalize this, let

U := {Uα | α ∈
(

[n]
k

)
} (II.1)

be the cover of P(
∧k V ) where Uα is the open set of P(

∧k V ) given by the open condition pα 6= 0.
If α = [k] then the set S of k × n matrices of the form [Idk |B] parametrize Φ(Gr(k, V )) ∩ U[k],
i.e., the map rowspace : S → U[k] gives injective coordinates for Φ(Gr(k, V )) ∩ U[k] which are
linear in the parameters of S. By permuting the columns of matrices in S, we may similarly
parametrize Φ(Gr(k, V )) ∩ Uα for α ∈

(
[n]
k

)
.

Proposition II.2.8. The image of the Plücker map is a projective variety.

Proof. Since U is an affine cover of Plücker space, it suffices to show that the dense open set
Φ(Gr(k, V ))∩Uα is an affine variety for each α ∈

(
[n]
k

)
. We show this for α = [k], and the other

cases follow by symmetry. Let

Gα := Φ−1(Φ(Gr(k, V )) ∩ Uα) .

In the proof of Proposition II.2.7, we show that points in Gα are linear spaces of the form
rowspace[Idk |B] ⊂ V such that B ∈ Matk×(n−k). This identification defines a bijective map
Ψ : Matk×n−k → Gα. The composition Φ ◦ Ψ is injective, by Proposition II.2.7. Since this
composition is given by minors, it is a regular map. We observed that the entries of B are Plücker
coordinates, so they span an affine space in Plücker space. Let W denote the complementary
affine space, and Ω : Uα → W the projection. Then Gα is the graph of the regular map Ω◦Φ◦Ψ.
It follows that Gα is defined by polynomials in Uα, so it is an affine variety, and the image of
the Plücker map is a projective variety.

Corollary II.2.9. The Grassmannian Gr(k, V ) is a projective variety of dimension k(n− k).

Proof. The Plücker map is injective, so Gr(k, V ) is a projective variety. The dense subset
Gα ⊂ Gr(k, V ) is isomorphic to Matk×n−k, so dim(Gr(k, V )) = k(n− k).

II.3 Schubert Varieties

Schubert varieties are distinguished projective subvarieties of a Grassmannian. They are defined
with respect to a flag and a list α ∈

(
[n]
k

)
.
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Definition II.3.1. A flag F• on V is a list of nested linear subspaces of V ,

F• : 0 ( F1 ( F2 ( · · · ( Fn = V ,

with dim(Fi) = i for i ∈ [n]. If f1, . . . , fn ∈ V and Fi = 〈f1, . . . , fi〉 for i ∈ [n], then we say the
n× n matrix

F• :=

f1

...
fn

 (II.2)

is a basis for the flag F•. We sometimes refer to the list (f1, . . . , fn) as a basis for F•.

The flag E• with basis (e1, . . . , en) is called the standard flag. We note that the identity matrix
Idn is a basis for the standard flag.
Definition II.3.2. Let α ∈

(
[n]
k

)
and F• a flag in V . The Schubert variety XαF• ⊂ Gr(k, V ) is

the set of k-planes satisfying the incidence conditions,

XαF• := {H ∈ Gr(k, V ) | dim(H ∩ Fαi) ≥ i for i ∈ [k]} .

We call α a Schubert condition on Gr(k, V ) and F• a defining flag for XλF•.

We will give determinantal equations in Proposition II.3.14 which locally define XαF• as a
subvariety of Gr(k, V ). If αi+1 = αi + 1 then the incidence condition on XαF• given by αi
is implied by the condition given by αi+1. The implied conditions are called irrelevant. If
αk = n, then the corresponding condition is also irrelevant since H ∩ Fn = H has dimension k
for H ∈ Gr(k, V ). The necessary defining conditions are called relevant.
Example II.3.3. The k-planes H ∈ X(2,3,5)F• ⊂ Gr(3,C5) satisfy

(1) dim(H ∩ F2) ≥ 1,

(2) dim(H ∩ F3) ≥ 2, and

(3) dim(H ∩ F5) ≥ 3.

Condition (3) is trivial since dim(H ∩ F5) = dim(H) = 3 ≥ 3. Condition (1) is implied by (2)
and is thus irrelevant. Condition (2) is the only relevant condition defining X(2,3,5)F•.

We give sets of matrices S(α), Sα, and Sβα, which locally parametrize the Grassmannian Gr(k, V ),
the Schubert variety XαE•, and the intersection XαE• ∩XβE

′
• respectively, with respect to the

standard basis e of V .
Definition II.3.4. For α ∈

(
[n]
k

)
, the subset S(α) ⊂ St(k, n) of the Stiefel manifold is the set of

matrices M with (i, αj)th entry

Mi,αj := δij for i, j ∈ [k] ,

and with other entries arbitrary. The parameters of M give coordinates for the dense open set
Gr(k, V ) ∩ Uα ⊂ Gr(k, V ), and we call S(α) Stiefel coordinates on Gr(k, V ).
Example II.3.5. If α = [k], then matrices in S(α) have block form [Idk |B].
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Example II.3.6. For k = 3 and n = 7, the matrices in S(2, 5, 7) have the form∗ 1 ∗ ∗ 0 ∗ 0
∗ 0 ∗ ∗ 1 ∗ 0
∗ 0 ∗ ∗ 0 ∗ 1

 .

The 1 in position (i, αi) of a matrix in S(α) is called a pivot. The following is a consequence of
the proof of Proposition II.2.7.
Definition II.3.7. For α ∈

(
[n]
k

)
, the subset Sα ⊂ S(α) is the subset of matrices such that each

entry to the right of a pivot is 0. We call Sα the Stiefel coordinates on XαE•.
Example II.3.8. For k = 3 and n = 7, the matrices in S(2,5,7) have the form∗ 1 0 0 0 0 0

∗ 0 ∗ ∗ 1 0 0
∗ 0 ∗ ∗ 0 ∗ 1

 .

Definition II.3.9. Let α ∈
(

[n]
k

)
. We call XαE

◦
• := XαE• ∩ Uα the big cell of XαE•.

Proposition II.3.10. The restriction to Sα of the isomorphism φ : S(α)→ Gr(k, V )∩Uα given
by H 7→ [ pα(H) | α ∈

(
[n]
k

)
] is an isomorphism φα : Sα → XαE

◦
• .

Proof. The incidence conditions on H ∈ XαE
◦
• given in Definition II.3.2 are equivalent to the

conditions that H contains independent vectors hi ∈ 〈e1, . . . , eαi〉 for i ∈ [k]. If H ∈ Gr(k, V ) ∩
Uα, then hi may be chosen to be

hi = eαi +
αi−1∑
j=1

hijej .

Therefore, Sα is a subset of S(α) which maps into XαE
◦
• via φ. The inverse φ−1

α exists on XαE
◦
• .

The map φα is given by minors, which are polynomials. The inverse φ−1
α is given by polynomials

as the nonzero entries which are not identically 1 are Plücker coordinates.

Any flag F• has a basis f := (f1, . . . , fn). Using f as a basis for V realizes F• as the standard
flag. We apply Proposition II.3.10.
Corollary II.3.11. Suppose α ∈

(
[n]
k

)
and F• is a flag in V . Then a matrix Mα parametrizing

Sα gives local coordinates for XαF•.

The ith row of Mα has ai − i indeterminates. Corollary II.3.11 allows us to calculate the
dimension of a Schubert variety.
Corollary II.3.12. The dimension of XαF• is

dim(XαF•) =
k∑
i=1

αi − i.

Using Corollary II.2.9, we calculate the codimension of a Schubert variety.
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Definition II.3.13. The codimension of XαF• in Gr(k, V ) is

|α| := k(n− k)−
k∑
i=1

αi − i .

With this definition, we see that each Grassmannian Gr(k, V ) admits a unique Schubert condi-
tion (k, k+2, . . . , n) which defines Schubert varieties of codimension one. We write to denote
this condition, and we call X F• a hypersurface Schubert variety.

There is an implicit way express the open dense subset XαF• ∩ Uβ ⊂ XαF• using the Stiefel
coordinates S(β) parametrizing Uβ with respect to e. Let the matrix F• denote a basis for the
flag F• with respect e. Similarly, let Fi denote the i×n submatrix of F• whose row space is the
subspace Fi in the flag F•.
Proposition II.3.14. Let α, β ∈

(
[n]
k

)
be Schubert conditions. Let XαF• ⊂ Gr(k, V ), and M ∈

S(β) be a matrix parametrizing Uβ ⊂ Gr(k, n). Then the open dense subset XαF• ∩ Uβ ⊂ XαF•
is defined by the vanishing of the ri × ri minors of

(
M
Fαi

)
, where ri = k + αi − i+ 1 for i ∈ [k].

Proof. The definition (II.3.2) is equivalent to the requirement that the rows of M and rows of
Fαi span a space of dimension at most ri − 1. The implied rank conditions on

(
M
Fαi

)
are given

by the vanishing of ri × ri minors.

Example II.3.15. The Schubert variety H ∈ X(2,3,5,6)F• ⊂ Gr(4, 6) has only one relevant
condition, dim(H ∩ F3) ≥ 2, so its determinantal conditions from Proposition II.3.14 consist of
the seven maximal minors of

(
M
F3

)
.

Definition II.3.16. Regarding Gr(k, V ) as a variety in Plücker space via the Plücker embedding,
the Plücker ideal Plk,n is the ideal Plk,n := I(Gr(k, V )).

The partially ordered set of Schubert conditions in
(

[n]
k

)
given by

α ≤ β if αi ≤ βi for i ∈ [k]

is called the Bruhat order. This order gives us a way to determine the number of determinants
needed to define a Schubert variety.
Proposition II.3.17. The ideal of the Schubert variety XαE• in Plücker space is

Plk,n +(pβ | β 6≤ α) .

Proof. Suppose the matrix M parametrizes S(α), and consider the Stiefel coordinates Sα ⊂ S(α)
on XαE

◦
• ⊂ Gr(k, V ) ∩ Uα. As observed in the proof of Proposition II.2.7, the parameters of M

which are identically zero on Sα are the Plücker coordinates pβ such that β 6≤ α.

This gives us the number of linearly independent generators of I(XαF•) as a subvariety of
Gr(k, V ). The right action of g ∈ GL(n,C) on V induces a dual left action on the Plücker
coordinates of Gr(k, V ). The Grassmannian is invariant under the action of GL(n,C), so the
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Plücker ideal is invariant under the dual action. Thus for g ∈ GL(n,C) the ideal I(XαF•.g) is
given by the sum of ideals

I(XαF•.g) = Plk,n +(g−1.pβ | β 6≤ α) .

Corollary II.3.18. Let F• be any flag in V . The ideal of the Schubert variety XαF• as a
subvariety of Gr(k, V ) is generated by

#{pβ | β 6≤ α}

linearly independent determinantal equations.

Using this, we see how far one may reduce the system of determinantal equations given by
Proposition II.3.14. For example, the seven maximal minors in Example II.3.15 may be reduced
to three linearly independent minors.

The hypersurface X F• ⊂ Gr(k, V ) has one relevant condition given by det
(

M
Fn−k

)
= 0. Using

Corollary II.3.18, we see the number of linearly independent determinants from Proposition
II.3.14 needed to define XαF• is greater than |α| when |α| > 1 and min{k, n− k} ≥ 2.

II.4 Schubert Problems

We have now seen two ways to locally express a Schubert variety XαF•, one by choosing a basis
f of V so that Sα parametrizes a dense subset of XαF• and another by determinantal equations
in parameters for some Uβ with respect to the standard basis e. Thus we may express the
intersection points of XαF• ∩ XβG• using either determinantal conditions defining XαF• and
XβG• in local Stiefel coordinates for Gr(k, V ) or determinantal conditions defining XβG• in
local Stiefel coordinates for XαF•. We give a third formulation of XαF• ∩ XβG• when F• and
G• are in sufficiently general position.
Definition II.4.1. The flag E ′• with basis (en, . . . , e1) is called the standard opposite flag.

We note that the n× n matrix with ones along the antidiagonal and zeros elsewhere is a basis
for the standard opposite flag.
Definition II.4.2. For α, β ∈

(
[n]
k

)
, the subset Sβα ⊂ Matk×n consists of matrices M whose

entries satisfy

Mij = 1 if j = αi and Mij = 0 if j > αi or j < n+ 1− βk−i+1 ,

and whose other entries are arbitrary.
Example II.4.3. Let α = (2, 5, 7, 9) and β = (4, 5, 7, 8) be Schubert conditions in

(
[9]
4

)
. The

variety XαE• ∩XβE
′
• has local Stiefel coordinates

0 1 0 0 0 0 0 0 0
0 0 ∗ ∗ 1 0 0 0 0
0 0 0 0 ∗ ∗ 1 0 0
0 0 0 0 0 ∗ ∗ ∗ 1

 . (II.3)
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We describe flags in sufficiently general position.
Definition II.4.4. The flags F• and G• in V are in linear general position if

dim(Fi ∩Gj) = max{0, i+ j − n} for i, j ∈ [n] .

Proposition II.4.5. If the flags F• and G• are in linear general position, then they have bases
(f1, . . . , fn) and (g1, . . . , gn) respectively, such that gi = fn−i+1 for i ∈ [n].

Proof. We simply choose nonzero vectors fi ∈ Fi ∩ Gn−i+1, and Definition II.4.4 ensures that
the sets (f1, . . . , fi) and (fn, . . . , fi) are each linearly independent.

Let F•, G• be flags in V in linear general position and α, β ∈
(

[n]
k

)
with αi + βk−i+1 ≥ n + 1 for

i ∈ [k]. Let f be a basis of F• as described in Proposition II.4.5, so that (fn, . . . , f1) is a basis
of G•. We observe that Sβα parametrizes the dense subset of XαF• ∩XβG•, given by the linear
span of the vectors

Mi,αi +

αi−1∑
j=n−βk−i+1+1

Mi,jfj ,

for i ∈ [k].

For an example, the row spaces of the matrices of the form (II.3) with respect to the standard
basis e form a dense open subset of XαE• ∩XβE

′
•.

Definition II.4.6. An intersection X := X1 ∩ · · · ∩Xm of subvarieties of a variety G is said to
be transverse at a point x ∈ X if the equations defining the tangent spaces of X1, . . . , Xm at the
point x are in direct sum.
Definition II.4.7. An intersection X := X1 ∩ · · · ∩ Xm of subvarieties of a variety G is said
to be generically transverse if, for each component Y ⊂ X, there is a dense open subset Z ⊂ Y
such that X is transverse at every point in Z. If X is zero dimensional, then it is generically
transverse if and only if it is transverse at every point x ∈ X.
Definition II.4.8. Let α = (α1, . . . , αm) be a list of Schubert conditions in

(
[n]
k

)
. We define

|α| := |α1|+ · · ·+ |αm|.

The following result is fundamental for Schubert calculus.
Proposition II.4.9 (Generic Transversality). Let α = (α1, . . . , αm) be a list of Schubert condi-
tions in

(
[n]
k

)
. If F 1

• , . . . , F
m
• are general flags, then

X := Xα1F 1
• ∩ · · · ∩XαmF

m
• (II.4)

is generically transverse. In particular, if X is nonempty, then codim(X) = |α|.

Kleiman proved Proposition II.4.9 for algebraically closed fields of characteristic zero [22], and
Vakil proved the analogue for algebraically closed fields of positive characteristic [43].
Remark II.4.10. As an immediate consequence, if F•, G• are general and XαF• ∩XβG• 6= ∅,
then

codim(XαF• ∩XβG•) = |α|+ |β| .
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Straightforward calculation shows that Sβα has dimension k(n− k)− |α| − |β|.
Definition II.4.11. A list α = (α1, . . . , αm) of Schubert conditions on Gr(k, V ) satisfying

m∑
i=1

|αi| = k(n− k) = dim(Gr(k, V ))

is called a Schubert problem on Gr(k, V ). By Proposition II.4.9, given general flags F 1
• , . . . , F

m
•

on V , the intersection
X := Xα1F 1

• ∩ · · · ∩XαmF
m
•

is empty or zero-dimensional. We call X an instance of the Schubert problem α.

Since general flags are in linear general position, we may formulate an instance X of α with
minors involving local coordinates for Gr(k, V ), Xα1F 1

• , orXα1F 1
•∩Xα2F 2

• . The third formulation
may be the most efficient for computation, since it involves the fewest determinantal equations
and variables. A real instance of a Schubert problem α is an instance

Xα1F 1
• ∩ · · · ∩XαmF

m
• ,

which is a real variety.
Remark II.4.12. Traditionally, Schubert calculus asks for the number of intersection points in
a general instance of a Schubert problem. In this thesis, we study the number of intersection
points with residue field R (i.e. real subspaces of V ) in a real instance of a Schubert problem.
We say that a real instance of a Schubert problem has been solved if we have successfully counted
the number of real points in the intersection. We call the complex intersection points solutions
to the Schubert problem.
Definition II.4.13. A parametrized rational normal curve γ ⊂ Pn−1 is a curve of the form

γ(s, t) := (γ1(s, t) , . . . , γn(s, t)) , for (s, t) ∈ P1 ,

so that the components γ1, . . . , γn give a basis for the space of degree n− 1 forms on P1. If each
γi has real coefficients, then we say that γ is a real parametrized rational normal curve.

If γ1 and γ2 are parametrized rational normal curves, then their components give bases for the
space of degree n− 1 forms, so they differ by a change of basis B ∈ GL(n,C),

γ1(s, t)B = γ2(s, t) .

Furthermore, if γ1 and γ2 are real, then they give real bases for the space of n− 1 forms on P1,
and there is a real change of basis C ∈ GL(n,R),

γ1(s, t)C = γ2(s, t) .

Therefore, all real parametrized rational normal curves are equivalent by the action of GL(n,R).

Throughout this thesis, we consider the real curve γ(s, t) to be fixed. While we may make
different choices of γ to facilitate proof, the resulting theorems hold for all other choices by
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applying the GL(n,R) action.
Example II.4.14. The Veronese curve parametrized by

γ(s, t) := (sn−1 , sn−2t , . . . , stn−2 , tn−1)

is a real parametrized rational normal curve. By convention, γ(t) := γ(1, t) for t ∈ C, and
γ(∞) := γ(0, 1).
Definition II.4.15. For a ∈ P1, the osculating flag F•(a) is the flag whose ith subspace Fi(a)
is the i-dimensional row space of the matrix,

Fi(a) :=


γ(a)
γ′(a)
...

γ(i−1)(a)

 . (II.5)

If γ is the Veronese curve, then F•(0) is the standard flag, and F•(∞) is the standard opposite
flag.
Definition II.4.16. Let α be a Schubert condition on Gr(k, V ), a ∈ P1, and F•(a) the flag
osculating γ at γ(a). We call the Schubert variety Xα(a) := XαF•(a) an osculating Schubert
variety. We say that Xα(a) osculates γ at γ(a).

II.5 Associated Schubert Varieties

Let V ∗ be the usual dual vector space to V . The duality between V and V ∗ induces an association
between the Grassmannian Gr(k, V ) and the Grassmannian Gr(n− k, V ∗). We find it useful to
study the corresponding association of Schubert varieties.
Definition II.5.1. Let F• be a flag in V . The flag F⊥• dual to F• is the flag in V ∗ whose
i-dimensional subspace F⊥i is the annihilator of Fn−i for i ∈ [n− 1],

F⊥• : 0 ( (Fn−1)⊥ ( · · · ( (F1)⊥ ( F⊥n := V ∗ .

The complement of α ∈
(

[n]
k

)
is the list αc := [n] \ α. We realize a Schubert condition α ∈

(
[n]
k

)
as a permutation σ(α) on [n], by appending αc to α,

σ(α) := (α, αc) .

Example II.5.2. The Schubert condition (1, 3, 6) ∈
(

[7]
3

)
is a permutation

σ(α) = (1, 3, 6 | 2, 4, 5, 7) .

We use a vertical line in place of a comma to denote the position where the entries of σ(α) are
allowed to decrease.

Let ω := (n, n− 1, . . . , 2, 1) be the longest permutation on [n].
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Definition II.5.3. Let α ∈
(

[n]
k

)
be a Schubert condition. The Schubert condition α⊥ ∈

(
[n]
n−k

)
associated to α is given by the composition of permutations

α⊥ := ωσ(α)ω .

Example II.5.4. Let α = (2, 3) ∈
(

[5]
2

)
be a Schubert condition. Writing

α⊥ = ω(2, 3 | 1, 4, 5)ω = (1, 2, 5 | 3, 4)

as an element of
(

[5]
3

)
gives the Schubert condition α⊥ = (1, 2, 5).

Definition II.5.5. Let ⊥ : Gr(k, V ) → Gr(n − k, V ∗) be the dual map, mapping a k-plane to
its annihilator, H 7→ H⊥. Since (H⊥)⊥ = H, ⊥ is a bijection.
Proposition II.5.6. Let XαF• ⊂ Gr(k, V ) be a Schubert variety. Then ⊥(XαF•) = Xα⊥F

⊥
• .

Proof. Let H ∈ XαF•. Definition (II.3.2) is equivalent to the condition

dim(H ∩ Fi) ≥ #{αj ∈ α | αj ∈ [i]}

for i ∈ [n]. Equivalently, dim(span(H,Fi)) ≤ k+ i−#{αj ∈ α | αj ∈ [i]}, so dim(span(H,Fi)
⊥)

is at least

n− k − i+ #{αj ∈ α | αj ∈ [i]} = n− i−#{αj ∈ α | αj ≥ i+ 1} .

This yields

dim(span(H,Fi)
⊥) = dim(H⊥ ∩ F⊥n−i) ≥ n− i−#{αj ∈ α | αj ≥ i+ 1} .

By changing indices and applying the definition of α⊥, we have

dim(H⊥ ∩ F⊥i ) ≥ i−#{αj ∈ α | αj ≥ n− i+ 1} = #{α⊥j ∈ α⊥ | α⊥j ∈ [i]} ,

for i ∈ [n]. This is equivalent to Definition II.3.2 for Xα⊥F
⊥
• .

Let F• be the standard flag, whose basis is given by the row vectors e1, . . . , en. Since F⊥• is a
flag in the dual space V ∗, it has a dual basis of column vectors,

e∗n =


0
...
0
0
1

 , e∗n−1 =


0
...
0
1
0

 , . . . , e∗2 =


0
1
0
...
0

 , e∗1 :=


1
0
0
...
0

 .

We adapt the coordinates (II.3.7) on XαF•, giving local coordinates on the associated Schubert
variety Xα⊥F

⊥
• .

Definition II.5.7. Let α⊥ ∈
(

[n]
n−k

)
be a Schubert condition for Gr(n − k, V ∗). The set Ŝα⊥ ⊂
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Matn×(n−k) consists of matrices M whose entries satisfy

Mn+1−α⊥i,j = δi,j if i, j ∈ [n− k] , and Mi,j = 0 if i < n+ 1− α⊥j , (II.6)

and whose other entries are arbitrary.
Remark II.5.8. The matrices of Ŝα⊥ are related to transposes of the matrices of Sα⊥. Suppose
Mα⊥ is a matrix of indeterminates parametrizing Sα⊥, and N := (δi,n−j+1) is the n × n matrix

with ones along the antidiagonal. Then Ŝα⊥ is parametrized by the product

Mα⊥ := NMα⊥ .

Example II.5.9. If α = (2, 5) is a Schubert condition on Gr(2, 6), then we have α⊥ = (1, 3, 4, 6).

The coordinates Sα and Ŝα⊥ are given by the matrices

(
a 1 0 0 0 0
b 0 c d 1 0

)
and


0 0 0 1
0 0 0 −a
0 0 1 0
0 1 0 0
0 −d −c −b
1 0 0 0

 .

Note that choosing the arbitrary entries of one matrix determines those of the other so that each
gives the null space of the other. This identification is canonical.

Let (x0, y0) and (x1, y1) be points in the Cartesian plane with x0 > x1 and y0 > y1. A left
step is the vector (−1, 0), and a down step is the vector (0,−1). A path from (x0, y0) to
(x1, y1) is a sequence p of length L := x0 − x1 + y0 − y1 of left steps and down steps such that
(x0, y0) +

∑L
i=1 pi = (x1, y1).

Definition II.5.10. To α ∈
(

[n]
k

)
we associate the path p(α) from (n− k, 0) to (0,−k) given by

p(α)i = (0,−1) if i ∈ α , and p(α)i = (−1, 0) if i 6∈ α .

The association α ↔ p(α) is a bijection between Schubert conditions
(

[n]
k

)
and paths from

(n− k, 0) to (0,−k).
Example II.5.11. If α = (2, 5) ∈

(
[6]
2

)
then α⊥ = (1, 3, 4, 6) ∈

(
[6]
4

)
. Then p(α) and p(α⊥) are

given by thick lines in Figure II.1.

Figure II.1: p(α) and p(α⊥).
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Proposition II.5.12. We have the equality of codimensions |α| = |α⊥|.

Proof. Given α ∈
(

[n]
k

)
, |α| is equal to the area of the region enclosed by p(α) and the axes.

Similarly, |α⊥| corresponds to the region enclosed by p(α⊥) and the axes. The path p(α⊥) is the
reflection of the path p(α) across the line y = −x, so the regions defining |α| and |α⊥| have the
same area.

The enclosed regions in Figure II.1 illustrate the equality |α| = 4 = |α⊥| for α = (2, 5) ∈
(

[6]
2

)
.

II.6 Osculating Schubert Calculus

The study of osculating Schubert calculus is made possible by work of Eisenbud and Harris [8].
They showed that given a set of Schubert varieties that osculate a rational normal curve at
distinct points, their intersection is dimensionally transverse. To prove this, we use a correspon-
dence between Schubert calculus and the Wronskian which originated in work by Castelnuovo
[4].
Definition II.6.1. Let Cn[t] be the vector space of polynomials in the variable t of degree less
than n with coefficients in C. The Wronskian of f1, . . . , fk ∈ Cn[t] is the determinant

Wr(f1, . . . , fk) := det


f1 · · · fk
f ′1 · · · f ′k
...

...

f
(k−1)
1 · · · f

(k−1)
k

 . (II.7)

Suppose f := (f1, . . . , fk) spans a k-dimensional subspace H. If g is another basis of H, and B
is a change-of-basis matrix such that Bf = g, then det(B) Wr(f) = Wr(g). Therefore, the roots
of Wr(f1, . . . , fk) depend only on H.
Proposition II.6.2. Suppose f1, . . . , fk ∈ Cn[t] are complex univariate polynomials of degree at
most n−1. The Wronskian Wr(f1, . . . , fk) is a univariate polynomial of degree at most k(n−k).

Proof. If f is not linearly independent, then Wr(f) = 0, so we may assume that f spans a k-plane
H ∈ Gr(k, V ). Representing polynomials in the monomial basis, we may assume H is the row
space of a matrix in reduced row echelon form. Denoting the rows by g1, . . . , gk, we have

deg(g1) > · · · > deg(gk) .

Since g and f span the same k-plane, their Wronskians have the same roots, so deg(Wr(f)) =
deg(Wr(g)). Let M denote the matrix in Definition (II.7) giving Wr(g), whose entries are
polynomials. Since deg(gi) ≤ n − i for i ∈ [n], we have deg(Mij) ≤ n − i − j + 1. It follows
directly that deg(det(M)) ≤ k(n− k).

Remark II.6.3. In general, the upper bound k(n − k) on the degree of Wr is attained. In
particular, we will prove Proposition II.6.6, which implies that if H is a solution to an instance
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of a Schubert problem involving only osculating hypersurface Schubert varieties, then Wr(H) has
k(n− k) distinct roots in P1.

Since the Wronskians of bases f and g of a k-plane H ∈ Cn[t] are proportional, the Wronskian
induces a well-defined map, called the Wronski map,

Wr : Gr(k,Cn[t]) −→ PCk(n−k)+1[t] .

By Proposition II.6.2, dim(PCk(n−k)+1[t]) = k(n− k) = dim(Gr(k,Cn[t])).

The proofs of the following Proposition and Corollary are based on an argument in [40]. Recall
the definition (II.5) of the matrix Fi(a).
Proposition II.6.4. Let V = Cn[x] have standard basis (1, x, . . . , xn−1), let H ∈ Gr(k, V ), and
let L := H⊥ ∈ Gr(n − k, V ∗) be the annihilator of H. If Fk(x) is the matrix corresponding to
the k-planes in V osculating the Veronese curve γ(t) := (1, t, . . . , tn−1) at γ(x), then L is the
row space of a (n− k)× n matrix, also denoted by L, with

det

(
Fk(t)
L

)
= Wr(H) ∈ PCk(n−k)+1[x] . (II.8)

Proof. We prove this forH with the general property that Wr(H) has k(n−k) distinct roots. The
other cases follow by a limiting argument. We reverse the roles of Gr(k, V ) and Gr(n− k, V ∗),
so we consider H⊥ ⊂ V ∗ to be spanned by row vectors and H ⊂ V to be spanned by column
vectors h1(x), . . . , hk(x).

Set h := (h1, . . . , hk) ∈ Matn×k, where hi be the column vector of coefficients in Cn such that
the polynomial hi(x) is the dot product γ(x) · hTi . We observe that the product Fk(x)h is the
matrix given in Definition (II.7) giving Wr(h), and rowspace(h) = H, so det(Fk(x)h) = Wr(H).
Since L is the null space of H, the determinant W := det

(
Fk(x)
L

)
and Wr(H) vanish at the same

points.

Laplace expansion along the first k rows of
(
Fk(x)
L

)
gives

W =
∑
α

(−1)(k−1)(n−k)+
∑
i αiLαFk(x)αc ,

where Lα is the maximal minor of L involving columns α, and Fk(x)αc is the maximal minor of
Fk(x) involving columns αc. Thus, we have an upper bound for the degree of W ,

deg(W ) ≤ deg(Fk(x)(n−k+1,...,n)) = k(n− k) .

Since W vanishes at the k(n − k) distinct roots of Wr(H), deg(W ) = k(n − k). Since W and
Wr(H) have the same roots and the same degree, they are proportional.

Corollary II.6.5. If H ∈ Gr(k, V ), then H is contained in the hypersurface X (t) for at most
k(n− k) values of t ∈ C.
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Proof. We argue in the a Grassmannian Gr(n − k, V ∗). Let L denote both a matrix L ∈
St(n − k, n) and a (n − k)-plane L ∈ Gr(n − k, V ∗), so that rowspace(L) = L. As we have
previously observed, X (t) ⊂ Gr(n− k, V ∗) has one relevant condition given by det

(
Fk(t)
L

)
= 0

for L ∈ X (t). So by Proposition II.6.4, choosing a n×k matrix H with H := colspace(H) = L⊥,
we have Wr(colspace(H)) = det

(
Fk(t)
L

)
as a point in PCk(n−k)+1[x]. Since

deg
(

det
(
Fk(t)
L

))
= deg(Wr(H)) ≤ k(n− k) ,

there are at most k(n− k) values of t for which det
(
Fk(t)
L

)
= 0. Equivalently, there are at most

k(n−k) values of t for which L ∈ X (t). By Proposition II.5.6, we reverse the roles of Gr(k, V )
and Gr(n− k, V ∗), giving the result.

Proposition II.6.6. Let H ∈ Xα(0). Then Wr(H⊥) has a root at x = 0 of order at least |α|.

Proof. Using the notation of Proposition II.6.4, we prove the dual statement, that is, if L =
H⊥ ∈ Xα⊥(0) ⊂ Gr(n− k, V ∗) then Wr(H) has a root at 0 of order at least |α⊥|. Since Xα⊥(0)

has local coordinates Sα⊥ , we use coordinates Ŝα for Xα(F•(0))⊥. Thus the columns hj form
a basis of H where hji = 0 if i < n + 1 − αj. Let H denote the n × (n − k) matrix with
these columns, so that the determinant of the product Fk(x)H is Wr(H). Since hji = 0 for
i < n+ 1− αj, every term of Wr(H) = det(Fk(x)H) has degree at least

k∑
j=1

n+ 1− αj − j = −k(k + 1) +
k∑
j=1

n+ 1− (αj − j) = |α| .

By Proposition II.5.12, every term of Wr(H) has a root at 0 of order at least |α⊥|.

Recall that the parametrized rational normal curve curve γ(t) is in fact a local parametrization
of the curve γ(s, t) with (s, t) ∈ P1. Thus the action of SL(2,C) on P1 induces a dual action on
γ(t).
Corollary II.6.7. Let H ∈ Xα(t) for some t ∈ C. Then Wr(H⊥) has a root at x = t of order
at least |α|.

Proof. Using the SL(2,C) action on P1 we may assume t = 0. Using the GL(n,C) action on
γ we may further assume γ(x) = (1, x, . . . , xn−1) is the Veronese curve. Thus the flag defining
Xα(x) has basis

F•(x) =


1 x x2 · · · xn−1

0 1 2x · · · (n− 1)xn−2

0 0 2 · · · (n− 1)(n− 2)xn−3

...
...

...
...

0 0 0 · · · (n− 1)!

 .

A direct calculation using II.6.4 shows the lowest-degree term of the Wronskian Wr(H) is
(−1)|α

⊥|pα⊥(H)x|α
⊥|, where p•(H) are the Plücker coordinates of the null space L. Since

|α| = |α⊥|, the result follows.
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Recall the open cover U of Plücker space from Definition II.1, which restricts to an open cover

G := {Gα := Gr(k, V ) ∩ Uα | α ∈
(

[n]
k

)
} . (II.9)

Definition II.6.8. The matrix F•(t)
−1 acts on Xα(0), giving Xα(0).F•(t)

−1 = Xα(t). We define
G(t) to be the collection of dense open sets of Gr(k, V ) defined by the corresponding action,

Gα(t) := Gα.F•(t)
−1 for Gα ∈ G .

The lower bound on the order of vanishing of Wr(H) at t = 0 given in the proof of Proposition
II.6.6 is attained for all H in the dense open subset Xα(t) ∩ Gα(t) of Xα(t). This proves a
stronger statement.
Corollary II.6.9. Let H ∈ Xα(t)∩Gα(t) for some t ∈ C. Then Wr(H⊥) has a root at x = t of
order |α|.

Given a list of Schubert conditions α = (α1, . . . , αm), we define

|α| := |α1|+ · · ·+ |αm| .

We may now prove dimensional transversality for intersections of osculating Schubert varieties.
Theorem II.6.10 (Eisenbud-Harris). Let α = (α1, . . . , αm) be a list of Schubert conditions on
Gr(k, V ) and a1, . . . , am ∈ P1 be distinct points. If the intersection

X := Xα1(a1) ∩ · · · ∩Xαm(am) (II.10)

is nonempty, then codim(X) = |α|.

Proof. Assume for a contradiction that X from (II.10) has codimension c < |α|. Consider
distinct points t1, . . . , tk(n−k)−c ∈ P1 \ {a1, . . . , am}. Since dimX = k(n− k)− c, and X (ti) is
a hyperplane section for each i, we have

X ∩X (t1) ∩ · · · ∩X (tk(n−k)−c) 6= ∅ .

Let H be a point in this intersection. By Proposition II.6.2, Wr(H) is a polynomial of degree
at most k(n− k). However, by Corollary II.6.9, Wr(H) has |α|+ k(n− k)− c > k(n− k) roots,
which is a contradiction.

Proposition II.6.11. A k-plane H ∈ Gr(k, V ) uniquely determines a Schubert problem α and
an osculating instance X of α with H ∈ X.

Proof. Suppose H is a solution to instances X1, X2 of Schubert problems α,β,

X1 := Xα1(a1) ∩ · · · ∩Xαm(am) and X2 := Xβ1(b1) ∩ · · · ∩Xβp(bp) .

We may use the action of SL(2,C) on each Xi to avoid having any osculation points at∞. This
induces an invertible action on H, so we lose no generality in doing this.
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Since α and β are Schubert problems, |α| = |β| = k(n − k). By Corollary II.6.9, we have the
equality

m∏
i=1

(x− ai)|α
i| = Wr(H) =

p∏
i=1

(x− bi)|β
i| ,

in projective space. So m = p, and we may reorder the Schubert varieties involved in X2 so that
ai = bi and |αi| = |βi| for i ∈ [m]. Assume for a contradiction that αi 6= βi for some i (without
loss of generality, i = 1). Thus H ∈ Xβ1(a1) ∩Xα1(a1) = Xω(a1) where ω ∈

(
[n]
k

)
is given by

ωi := min{β1
i , α

1
i } for i ∈ [k] ,

and so
H ∈ Xω(a1) ∩Xα2(a2) ∩ · · · ∩Xαm(am) . (II.11)

Since αi 6= βi, we have |ω| > |α1|, so |ω| + |α2| + · · · + |αm| > |α| = k(n − k), which implies
the intersection (II.11) is empty by Theorem II.6.10. This contradiction implies αi = βi for all
i, proving the statement.

II.7 The Shapiro Conjecture

The dimensional transversality of Eisenbud and Harris shows that it is reasonable to study the
Schubert calculus of osculating Schubert varieties. In 1993, the brothers Boris and Michael
Shapiro made the remarkable conjecture that an instance of a Schubert problem in a Grass-
mannian given by real osculating Schubert varieties has all solutions real. The conjecture was
proved in [28, 29].
Theorem II.7.1 (Mukhin-Tarasov-Varchenko). Let α = (α1, . . . , αm) be a Schubert problem on
Gr(k, V ). If a1, . . . , am ∈ RP1 are distinct, then the intersection

Xα1(a1) ∩ · · · ∩Xαm(am)

is transverse with all points real.

The Shapiro Conjecture may be seen in the first nontrivial Schubert problem, which asks how
many 2-dimensional subspaces of C4 meet four fixed 2-dimensional subspaces nontrivially. If
the flags are general, the answer is two. Theorem II.7.1 asserts that both solutions are real and
distinct if the flags involved osculate a rational normal curve at distinct real points. We show
this in the following example.
Example II.7.2. Let γ(t) := (1, t, t2, t3) parametrize the Veronese curve, and F•(t) be family
of osculating flags. Suppose t1, . . . , t4 ∈ RP1 are distinct, and consider the four 2-dimensional
subspaces F2(t1), . . . , F2(t4) ⊂ C4. We ask two questions: (1) how many 2-dimensional subspaces
of C4 meet all four fixed subspaces nontrivially, and (2) how many real 2-dimensional subspaces
of C4 meet all four fixed subspaces nontrivially?

We observe that Question (1) is a Schubert problem, and Question (2) is a real Schubert problem,
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because we are counting the points in the intersection

X (t1) ∩X (t2) ∩X (t3) ∩X (t4) .

Since t1, t2 are real and distinct, there is some s ∈ SL(2,R) such that t1.s = 0, t2.s = ∞,
t3.s =: a ∈ R, and t4.s =: b ∈ R. Explicitly, if t1 = (t11, t12) and t2 = (t21, t22), then

s =

(
t11 t12

t21 t22

)−1

.

Since s is invertible, the points 0,∞, a, b are distinct. By a change of real basis on (γ1, . . . , γn), we
may assume γ(t) is the Veronese curve. Using these actions, we replace the flags F•(t1), . . . , F•(t4)
of Questions (1) and (2) by the flags F•(0), F•(∞), F•(a), and F•(b), which does not affect
whether solutions to the Schubert problem are real.

The only relevant condition for X (0) is that every H ∈ Gr(2,C4) meets F2(0) nontrivially.
Similarly, if H ∈ X it meets the other fixed 2-planes nontrivially. Thus Question (1) is given
by counting the points in the intersection

X := X (0) ∩X (∞) ∩X (a) ∩X (b) .

The intersection X (0) ∩X (∞) is parametrized by the matrix

M :=

(
x 1 0 0
0 0 y 1

)
,

so we find the set on which rowspace(M) meets F2(t) nontrivially for t = a, b. This condition is
equivalent to the equations

det


x 1 0 0
0 0 y 1
1 a a2 a3

0 1 2a 3a2

 = det


x 1 0 0
0 0 y 1
1 b b2 b3

0 1 2b 3b2

 = 0 .

Thus we solve the system of equations

f := −2xya3 + a2x+ 3a2y − 2a = 0
g := −2xyb3 + b2x+ 3b2y − 2b = 0 .

Using f to eliminate the xy-term of g yields

y =
2a+ 2b− abx

3ab
, (II.12)

which is defined since a, b 6= 0 and a 6= b (we require a 6= b to divide by a− b). Substituting back
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into f = 0 and multiplying by the nonzero constant 3b
2a2

gives

abx2 − 2(a+ b)x+ 3 = 0 . (II.13)

This equation has two solutions,

x =
a+ b±

√
a2 − ab+ b2

ab
,

each determining a unique y-value by (II.12). We observe that the discriminant of (II.13) is a
sum of squares,

a2 − ab+ b2 =
1

2
a2 +

1

2
b2 +

1

2
(a− b)2 ,

so it is positive for all a, b 6= 0 with a 6= b. This implies that there are two distinct solutions,
answering Question (1).

Since the discriminant of (II.13) is positive, the two solutions of Question (1) have real x-values.
These determine real y-values by Equation II.12, which implies that both solutions to the complex
Schubert problem are real, answering Question (2). Question (2) is the first nontrivial example
of Theorem II.7.1.

II.8 The Problem of Four Real Tangent Lines

The projective space Pn−1 is the Grassmannian Gr(1,Cn) of lines through the origin of Cn. That
is, a 1-dimensional subspace of Cn is a point (or 0-dimensional affine space) in Pn−1. We extend
this to higher dimensional subspaces and realize Gr(k,Cn) as the set of (k−1)-dimensional affine
spaces in Pn−1. In this way, Example II.7.2 is a question about lines which intersect four fixed
lines in C3.

We illustrate this problem of four lines by giving another instance of Theorem II.7.1. We assume
γ to be the twisted cubic curve in P3 parametrized by

γ(t) :=

(
−1 + 6t2,

7

2
t3 +

3

2
t, −1

2
t3 +

3

2
t

)
,

and let `1, `2, `3, `4 be the fixed lines tangent to γ(t) at t = −1, 0, 1, 1
2

respectively. This is the
same curve used in [40], chosen for aesthetic reasons. Since all real rational normal curves are
equivalent by a real change of basis, this curve is equivalent to the Veronese curve used in the
previous example.

Since the family of quadric surfaces in P3 is 9-dimensional, and the restriction that a quadric A
contain a fixed line imposes 3 independent conditions on that quadric, three mutually skew lines
determine A. Figure II.2 displays the ruling of the hyperboloid A containing the lines `1, `2, and
`3. The lines in the opposite ruling are the lines in P3 which meet `1, `2, and `3.
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Figure II.2: γ(t), `1, `2, and `3.

Figure II.3 shows the opposite ruling of A, containing the real lines meeting `1, `2, and `3. The
two lines meeting all four tangents are real if and only if the fourth tangent meets the hyperboloid
at two real points, and in this case the lines containing those points are the two solutions. The
thick black line in Figure II.3 is tangent to γ at γ

(
1
2

)
, so the blue real lines are the two lines

predicted by Schubert calculus when the four fixed lines are tangent at t = −1, 0, 1, 1
2
.
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Figure II.3: `4 and two solution lines.

II.9 Conjectures with Computational Support

Computer experimentation provided evidence in favor of the Shapiro Conjecture [31], but further
experimentation revealed that the most straightforward generalization to general flag varieties
is false [39]. After these computations, Eremenko and Gabrielov proved the Shapiro Conjecture
for the Grassmannian of lines Gr(2, n) [10]. Mukhin, Tarasov, and Varchenko eventually proved
the Shapiro Conjecture for all Grassmannians in type A [29].

Computational experiments [12, 14, 18, 33] suggested generalizations and variants of the Shapiro
conjecture, some of which have been proven [11, 19]. We describe a variant of the problem which
will be the focus of much of this thesis.

Recall the Wronski map from a Grassmannian to a projective space,

Wr : Gr(k,Cn[t]) −→ PCk(n−k)+1[t] .

Restricting the domain to the Grassmannian of polynomials with real coefficients, denoted by
Gr(k,Rn[t]), gives the real Wronski map,

WrR : Gr(k,RCn[t]) −→ PRk(n−k)+1[t] .
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By Theorem II.6.10, the fibers of Wr are finite. The problem of determining the number of
points in a fiber of Wr is called the inverse Wronski problem.

Since WrR is a map between manifolds of the same dimension, it may have a topological degree,
which gives a lower bound for the number of real points in the fiber Wr−1

R (f) over a general point
f ∈ PRk(n−k)+1[t]. The main result of [9] calculates this topological degree, finding nontrivial
lower bounds on the number of points in a fiber Wr−1

R (f). If n is even, then either Gr(k,RCn[t])
or PRk(n−k)+1[t] is be orientable, and the topological degree, which we denote by σk,n, is zero. If n
is odd, then neither Gr(k,RCn[t]) nor PRk(n−k)+1[t] is be orientable, and σk,n may be nontrivial.
For k ≤ n− k, we have

σk,n :=
1!2! · · · (k−1)!(n−k−1)!(n−k−2)! · · · (n−2k+1)!

(
k(n−k)

2

)
!

(n−2k+2)!(n−2k+4)! · · · (n−2)!
(
n−2k+1

2

)
!
(
n−2k+3

2

)
! · · ·

(
n−1

2

)
!
. (II.14)

If n is odd and k > n− k, we have σk,n = σn−k,n. This is a lower bound on the number of real
points in the fiber Wr−1

R (f) over f ∈ PRk(n−k)+1[t] with k(n − k) distinct roots. We give the
main theorem of [9] in the language of Schubert calculus.
Theorem II.9.1 (Eremenko-Gabrielov). Suppose a ∈ (P1)k(n−k) is a list of distinct points in
P1. Furthermore, suppose a is stable under complex conjugation, that is, a1, . . . , ak(n−k) are the
roots of a real polynomial. Then the real osculating Schubert problem

X := X (a1) ∩ · · · ∩X (ak(n−k))

contains at least σk,n real points.

The topological lower bounds of Eremenko and Gabrielov extend to Schubert problems of the
form α = (α, , . . . , ) where α is an arbitrary Schubert condition. Soprunova and Sottile ex-
tended these topological lower bounds to Schubert problems of the form α = (α1, α2, , . . . , )
[37], and we present their formula in Proposition III.3.6. When k and n are even, there is a
choice of points in Theorem II.9.1 such that there are no real points in X, so the topological
lower bound σk,n = 0 is sharp [9]. For other cases, the lower bound given by σk,n is not known
to be sharp.

In the next two Chapters, we discuss a computational investigation of Eremenko-Gabrielov type
lower bounds from the more general point of view of Schubert calculus and prove results inspired
by the data. We include a report on the observed sharpness of many of the bounds σk,n. In
this project, we keep track of whether each Schubert condition is associated to a real or nonreal
osculation point to detect additional structure.
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CHAPTER III
INVESTIGATION OF LOWER BOUNDS

The Mukhin-Tarasov-Varchenko Theorem II.7.1 states that an instance of a Schubert problem
on a Grassmannian involving Schubert varieties osculating a rational normal curve γ at real
points has all solutions real. Intersections involving complex osculation points with the nonreal
points coming in pairs may be real varieties, but they typically contain some nonreal points.
While the number of real points in such intersections may not be an invariant of the Schubert
problem, there may be related invariants such as the topological lower bound on the number
of real solutions in Theorem II.9.1 given by Eremenko and Gabrielov. We study real instances
of Schubert problems with the goal of understanding these invariants. Thus we describe real
osculating instances of Schubert problems as real enumerative problems and give a method for
solving them.

III.1 Real Osculating Instances

We retain the conventions of Chapter II. In particular, the results of this chapter depend on
fixing a real parametrized rational normal curve γ(t). For a flag F• in V , we define the conjugate
flag

F• : 0 ⊂ F1 ⊂ · · · ⊂ Fn = V .

Proposition III.1.1. Let α ∈
(

[n]
k

)
be a Schubert condition and F• a flag in V . We have

XαF• = XαF•.

Proof. For H ∈ Gr(k, V ), we have the chain of equivalences

H ∈ XαF• ⇐⇒ dim(H ∩ Fαi) ≥ i for i ∈ [k]
⇐⇒ dim

(
H ∩ Fαi

)
≥ i for i ∈ [k]

⇐⇒ dim
(
H ∩ Fαi

)
≥ i for i ∈ [k]

⇐⇒ H ∈ XαF• .

We note that atb = at
b

for any real number a and any positive integer b.
Corollary III.1.2. Let α ∈

(
[n]
k

)
be a Schubert condition. We have Xα(t) = Xα(t).

An instance of the Schubert problem α = ( , . . . , ) is a real variety if the corresponding
osculation points t1, . . . , tm are the roots of a real polynomial of degree m. We refine this
condition to give criteria for an osculating instance of a general Schubert problem to be a real
variety.
Corollary III.1.3. Suppose α = (α1, . . . , αm) is a Schubert problem on Gr(k, V ), and |αi| > 0
for i ∈ [m]. Furthermore, suppose t1, . . . , tm ∈ P1 are distinct, and the instance

X := Xα1(t1) ∩ · · · ∩Xαm(tm) (III.1)
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of α is nonempty. Then X is a real variety if and only if for i ∈ [m] there exists j ∈ [m] such
that Xαi(ti) = Xαj(tj).

If X from Equation (III.1) is real, then we call it a real osculating instance of α.

Proof. Suppose X is a real variety and H ∈ X. Since X = X, we have

H ∈ Xα1(t1) ∩ · · · ∩Xαm(tm) .

By Proposition II.6.11, one may recover α and t from H, so there is an involution

(Xα1(t1), . . . , Xαm(tm)) 7−→ (Xα1(t1), . . . , Xαm(tm)) .

Applying Corollary III.1.2, we have the forward implication. The reverse implication is elemen-
tary, since X = X implies X is real.

Let <(a) and =(a) denote the real and imaginary parts of a complex number. Then the real
part <(f) or imaginary part =(f) of a complex polynomial may be defined by taking the real
or imaginary part respectively of the coefficients defining f .
Proposition III.1.4. The intersection Xα(t) ∩ Xα(t) of complex conjugate Schubert varieties
is defined by the vanishing of the real and imaginary parts of the minors which define Xα(t).

When we have a real osculating instance of a Schubert problem, Proposition III.1.4 gives us a
real generating set for its ideal.

Proof. Let I be the ideal generated by the minors from Proposition II.3.14 whose vanishing
defines Xα(t), let I be the ideal with generators conjugate to those of I, and let J be the ideal
generated by the real and imaginary parts of the generators of I. Note that V(I) is Xα(t), and
for a complex polynomial f , we have <(f) = (f + f)/2 and =(f) = (f − f)/(2i). Since the
generators of J are complex linear combinations of the generators of I and I, we have J ⊂ I+I.
Similarly, the generators of I are complex linear combinations of the generators of J , so I ⊂ J .
By symmetry, I ⊂ J , so I + I ⊂ J . Therefore, J = I + I, which implies that J is the ideal of
Xα(t) ∩Xα(t).

III.2 Computations in Real Schubert Calculus

We use modern software tools to study the real inverse Wronski problem as a problem in Schubert
calculus. Computation has been used to symbolically solve real osculating instances of Schubert
problems with the more restrictive hypothesis that all osculation points are real [12, 14, 33, 39].
The framework used to interface with networks of computers for [12] (later adapted for [14]) is
described in [20]. We adapt this framework to study Eremenko-Gabrielov type lower bounds for
general Schubert problems (those involving more than two non-hypersurface Schubert varieties).

The data collected in [12, 14] were gathered using the computer algebra system Singular with
custom libraries. We use the determinantal equations of Proposition II.3.14 to formulate a
real instance X of a Schubert problem (α1, . . . , αm) involving Schubert varieties which osculate
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the Veronese curve γ(t) in local coordinates S(1, . . . , k), Sα1 , or Sα
2

α1 on Gr(k, V ), Xα1(0), or
Xα1(0) ∩Xα2(∞) respectively.

We use the real generators from Proposition III.1.4 to model the ideal of an instance X of a
Schubert problem, and we apply the tools of Section II.1 to count the real solutions. That
is, we calculate an eliminant and then determine the number of real roots using a Sturm-
Habicht sequence. Our custom library calculates the real generators, and schubert.lib and
the standard Singular libraries perform the remaining tasks. This is structured with efficiency
and repeatability in mind. We use the software architecture of [20], adapting the code of Hillar,
et al.

We use a database hosted by the mathematics department at Texas A&M University to keep
track of instances of Schubert problems we wish to compute. It also records results of compu-
tations, data needed to repeat the (pseudo)random computations, and enough information to
recover from most errors. The database is automatically backed up at regular intervals using
mysqldump, and when otherwise unrecoverable errors occur, we use a perl script designed to
repair the damaged part of the database using a recent backup.

Using algorithms based on the Littlewood-Richardson rule, we generated Schubert problems
and determined the numbers of complex solutions to corresponding instances. For each Schu-
bert problem α studied, we run timing tests to compare computational efficiency subject to a
choice of local coordinates, S(1, . . . , k), Sα1 or Sα

2

α1 . After making practical decisions, we assign
a corresponding computation type to α, which denotes whether instances of α are to be solved
using the coordinates S(1, . . . , k) for all osculation types or using S(1, . . . , k) for some types and

Sα1 or Sα
2

α1 for others. We then load the Schubert problem α into the database. This is auto-
mated by a script which generates an entry in a table used to keep track of pending requests to
solve a reasonable number of random instances of α.

This experiment is automated. The scheduling program crontab periodically invokes scripts
which check how many computations are running and submits job requests to a supercom-
puter. Each job runs a perl wrapper which communicates with the database using standard
DBI::mysql and DBD::mysql modules. The main procedure queries the database for a compu-
tation request and then generates a Singular input file which models instances of the requested
Schubert problem. It then invokes Singular to run the input file. The Singular process per-
forms all tasks needed to count the number of real points in a randomly generated instance, and
the perl wrapper records the results in the database.

This project continues to run on the brazos cluster at Texas A&M University, a high-performance
computing cluster. We also benefited from the night-time use of the calclab, a Beowulf cluster
of computers used by day for calculus instruction.

III.3 Topological Lower Bounds and Congruences

We denote the Schubert condition α in a visually appealing way by its Young diagram d(α),
which is a northwest justified collection of boxes with n − k + i − αi boxes in the ith row for
i = 1, . . . , k. Immediately, one verifies that the number of boxes in d(α) is equal to |α|, giving
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us immediate access the codimension of XαF•.
Example III.3.1. The Schubert condition α = (3, 6, 8) on Gr(3,C8) has Young diagram

d(α) = .

The shape above and to the left of the path p(α) from Definition II.5.10 is the same as the
shape of d(α). To express α in a compact way, we introduce exponential notation. Let α̂ =
(α̂1, . . . , α̂p) denote the distinct Schubert conditions comprising the Schubert problem α, and
let a = (a1, . . . , ap) be an exponent vector. Then α̂a := ((α̂1)a1 , . . . , (α̂p)ap) and α represent the
same Schubert problem problem if α consists of exactly ai copies of α̂i for i ∈ [p]. We will often
use d(α) in lieu of α when using exponential notation. For an example, let α̂1 = (5, 6, 9), α̂2 =
(5, 7, 9), α̂3 = (6, 8, 9) ∈

(
[3]
9

)
. The following represent the same Schubert problem,

α := (α̂1, α̂1, α̂2, α̂2, α̂2, α̂3)←→ ( 2, 3, ) =: α̂a .

Recall in a real osculating instance of a Schubert problem α, some osculation points are real,
while the rest come in complex conjugate pairs. Given such an instance, we write rα to denote
the number of Schubert varieties involved with Schubert condition α osculating at a real point.

Suppose α̂ and α represent the same Schubert problem. If α̂j = α, then rα ≡ aj mod 2. We
call (rα | α ∈ α̂) the osculation type of the corresponding instance of α.
Example III.3.2. The instance

X (0) ∩X (∞) ∩X (1) ∩ X (2) ∩X (i) ∩X (−i)

in Gr(3,C6) has osculation type (r , r ) = (3, 1).

The Mukhin-Tarasov-Varchenko Theorem II.7.1, asserts that a real instance of a Schubert prob-
lems with all osculation points real has all solutions real. Eremenko and Gabrielov gave examples
with other osculation types in which no solutions are real. Thus the number of real solutions
to a real osculating instance of a Schubert problem is sensitive to the osculation type, and we
track this in our data.

Table III.1 shows the observed frequency of real solutions after computing 400,000 random
instances of ( , 7) in Gr(2,C8). We leave a cell blank if there are no observed instances
of the given type with the given number of real solutions. Having tested 100,000 instances
with exactly one pair of complex conjugate osculation points (r = 5), none had only two
real solutions, but 77,134 had exactly four real solutions. We note that there are always six
complex solutions to the Schubert problem, and the observed distribution in the r = 7 column
is forced by the Mukhin-Tarasov-Varchenko Theorem II.7.1, since all osculation points are real.
Collecting the data in Table III.1 consumed 1.814 GHz-days of processing power.

In [9], Eremenko and Gabrielov gave lower bounds on the number of real solutions to a real
osculating instance of a Schubert problem involving at most one Schubert variety not given by

. In [37], Soprunova and Sottile extended these lower bounds to Schubert problem involving
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Table III.1: Frequency table with inner border.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

0 8964 8964
2 47138 67581 114719
4 77134 47044 22105 146283
6 100000 22866 5818 1350 130034

Total 100000 100000 100000 100000 400000

two nonhypersurface Schubert varieties. We refer to these as topological lower bounds. The
following definitions allow us to calculate topological lower bounds.
Definition III.3.3. Let α ∈

(
[n]
k

)
be a Schubert condition. The complementary Schubert con-

dition α′ ∈
(

[n]
k

)
is

α′i := n+ 1− αk+1−i , for i = 1, . . . , k .

It is illustrative to draw the Young diagrams of α and α′ inside the diagram d(1, . . . , k). For
example, if k = 3, n = 4, α = (2, 5, 7), then

d(α) = and d(α′) = .

Recall that the Bruhat order on Schubert conditions α ≤ β is given by α ≤ β for i ∈ [k].
This induces an order on diagrams so that d(α) ≤ d(β) if d(α) fits inside (.β). For example,

(1, 3, 6) ≤ (3, 5, 7) in
(

[7]
3

)
, so

≤ .

Definition III.3.4. Given α, β ∈
(

[n]
k

)
with α ≤ β in the Bruhat order, the skew Young diagram

d(α/β) := d(α)/d(β) is the diagram d(α) with the boxes of d(β) removed.

For Gr(3,C7),

λ := d((1, 3, 6)/(3, 5, 7)) =

/
= . (III.2)

A standard Young tableau of shape d(α/β) is an association between the boxes of a skew Young
diagram d(α/β) with N boxes and the set [N ] which is increasing in each row from left to
right and increasing in each column from top to bottom. We give examples of standard Young
tableaux of shape λ defined in Equation (III.2) ,

1 2
3 4

5

1 3
2 5

4

The standard Young tableau of shape d(α/β) which associates the boxes of d(α/β) to the set
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[N ] in order from left to right starting with the top and working down is called the standard
filling of d(α/β). The tableau on the left pictured above is the standard filling of λ. The set of
standard Young tableaux of shape d(α/β) is denoted SYT(d(α/β)).

The diagram has two standard fillings,

1 2
3 4

1 3
2 4 ,

so # (SYT ( )) = 2.

A tableau of shape may have i in the southwest box for i ∈ [5]. The order of the other boxes
given by their entries (1, . . . , î, . . . , 5) is the same as the order in one of the standard tableaux
of shape , so

#
(

SYT
( ))

= 5 ·#
(
SYT

( ))
= 10 .

Every standard Young tableau T of shape d(α/β) has a parity, sign(T ) = ±1, which is the parity
of the permutation mapping the standard filling to T .
Definition III.3.5. Suppose α, β ∈

(
[n]
k

)
, and α′ ≤ β. The sign imbalance of α′/β is

Σ(α, β) :=

∣∣∣∣∣∣
∑

T∈SYT(α′/β)

sign(T )

∣∣∣∣∣∣ .
Proposition III.3.6 (Soprunova-Sottile). Suppose α, β ∈

(
[n]
k

)
, α′ ≤ β, and

X := Xα(t1) ∩Xβ(t2) ∩X (t3) ∩ · · · ∩X (tm)

is a real osculating instance of a Schubert problem with t1, t2 ∈ RP1. Then X contains at least
Σ(α, β) real points.

The lower bound Σ(α, β) is obtained by calculating the topological degree of a map, and we it
a topological lower bound. If α = β = , then Σ(α, β) = σ(k, n) from definition (II.14).

Of the 756 Schubert problems we have studied so far, 267 of them have associated topological
lower bounds Σ(α, β) for the numbers of real solutions, and the other 489 involve intersections
of more than two hypersurfaces. We calculated sign imbalances and tested the sharpness of
topological lower bounds Σ(α, β). In cases where k and n are even, Eremenko and Gabrielov
showed that their lower bound Σ( , ) = 0 is sharp. This applies to three of the 267 Schubert
problems we studied with k = 2 and n = 4, 6, or 8. Our symbolic computations verified sharpness
for 258 of the remaining 264 cases tested. We do not give witnesses to these verifications here,
but our stored data are sufficient for repeating these calculations.

Our data suggest that the other six lower bounds may be improved. Table III.2 gives frequency
tables associated to two of these Schubert problems, ( , , 7) and ( , , 7), each with
35 solutions in Gr(4,C8). Theorem II.7.1 asserts that if r = 7 then all 35 solutions are real. We
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Table III.2: Topological lower bound 1, but observed lower bound 3.

# Real 7 7

Solutions r = 5 r = 3 r = 1 r = 5 r = 3 r = 1

1
3 16038 24070 16033 24184
5 5278 34048 51572 5224 34096 51017
7 15817 30992 28808 15769 30943 29449
9 41717 34231 48405 41872 33992 48248
11 17368 24601 23458 17465 24839 23756
13 15011 14761 8559 14829 14805 8560
15 13556 10197 4686 13471 10478 4635
17 7589 6255 2788 7650 6202 2816
19 13462 9744 3329 13295 9670 3081
21 5244 3071 1156 5337 3093 1060
23 4785 2256 581 4816 2169 605
25 17219 5535 1259 17335 5586 1262
27 1587 834 176 1530 814 184
29 3946 1236 235 4037 1242 289
31 3558 892 159 3498 876 157
33 711 307 73 631 262 75
35 33152 5002 686 33241 4900 622

Total 200000 200000 200000 200000 200000 200000

verified this fact 200,000 times for each problem, but we omit the data from the frequency table.
Since nonreal solutions come in pairs, we expect expect only odd numbers of real solutions, so
we omit rows corresponding to even numbers of real solutions.

The problems given in Table III.2 are dual to each other. It is a consequence of the duality
studied in Chapter IV that for a fixed set of osculation points these problems have the same
number of real solutions. This explains the remarkable similarity between the two distributions
in Table III.2, and it implies that they have the same lower bounds.

The Schubert problems ( , , 6) and ( , , 6) with 30 solutions in Gr(4,C8) are also
dual to each other, and their frequency tables bear remarkable similarity. They have topological
lower bound Σ = 0, but after calculating 1.6 million instances of each we never observed less
than 2 real solutions.

Table III.3 shows that we always observed at least two real solutions to ( 9), but Σ( , ) = 0,
so its topological bound is apparently not sharp.

More strikingly, while the number of real solutions to a real instance of this problem must be
congruent to 42 mod 2, we only observed instances with 42 mod 4 real solutions. The stronger
congruence modulo four in the number of real solutions is due to a geometric involution which
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Table III.3: Congruence modulo four.

# Real 9

Total
Solutions r = 7 r = 5 r = 3 r = 1

2 1843 30223 34314 66380
6 13286 51802 93732 151847 310667
10 69319 57040 47142 35220 208721
14 18045 17100 10213 6416 51774
18 13998 12063 5532 2931 34524
22 22883 15220 5492 2345 45940
26 4592 2767 839 362 8560
30 11603 4634 1194 450 17881
34 3891 2056 504 181 6632
38 473 211 65 22 771
42 40067 6884 973 226 48150

Total 200000 200000 200000 200000 800000

we explain in Chapter IV. Thus we will prove that Σ( , ) is not a sharp lower bound for the
number of real solutions to a real osculating instance of ( 9).

The sixth and final topological lower bound which we did not find to be sharp is Σ( , ) = 0
for ( , 8) having 90 complex solutions in Gr(4,C8). We omit the rather large frequency table
but note that we observed the number of real solutions to be congruent to 90 modulo four. This
congruence is related to that in Table III.3. In IV, we see that two is the sharp lower bound for
real osculating instances of this Schubert problem.

III.4 Lower Bounds via Factorization

For each Grassmannian, we describe a special Schubert problem α, and following joint work
with Hauenstein and Sottile [18], we show that the number of real solutions to an instance of α
has a lower bound depending only on osculation type. In particular, we explain the inner border
in Table III.1 related to the Schubert problem ( , 7) in Gr(2,C8).
Definition III.4.1. Let := (2, . . . , k, n) ∈

(
[n]
k

)
. Note that the diagram d( ) has n − k − 1

boxes in the ith row for i < k and no boxes in the kth row. Equivalently, d( ) has k − 1 boxes
in the jth column for j < n− k and no boxes in the (n− k)th column.

For Gr(2, 8), d( ) = , and for Gr(4, 8), d( ) = . There are local coordinates similar
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to S for X (∞), given by matrices M of the form

M :=



c1 c2a2 · · · cn−kan−k
bk
bk−1

0 0 0 · · · 0

0 0 · · · 0 1
n−k+2

bk−1

bk−2
0 0 · · · 0

0 0 · · · 0 0 2
n−k+3

bk−2

bk−3
0 · · · 0

...
...

...
...

. . .
. . .

. . .
. . .

...
0 0 · · · 0 0 · · · 0 k−2

n+3
b2
b1

0

0 0 · · · 0 0 · · · 0 0 k−1
n+2

b1


,

where a2, . . . , an−k, b1, . . . , bk are coordinates, b1, . . . , bk are nonzero, and ci are constants,

ci := (−1)n
(n− k − i)!(i− 1)!

1!2! · · · (n− k − 1)!(n− k + 1)!
.

The constants ci are introduced to simplify further calculations. Consider the Schubert problem
α = ( , n−1) and distinct points t1, . . . , tn ∈ P1 with t1 =∞. The intersection

X := X (∞) ∩X (t2) ∩ · · · ∩X (tn) (III.3)

is a real osculating instance of α. We examine the determinantal conditions defining X (t) for
t = t2, . . . , tn in the local coordinates M . We write Mβ to denote the maximal minor of M
involving columns β, and we write (Fn−k(t))βc to denote the maximal minor of Fn−k(t) involving
columns βc. Expanding along the rows of M gives

det

(
M

Fn−k(t)

)
= (−1)k(n−k)

∑
β∈
(

[n]
k

)(−1)|β|Mβ(Fn−k(t))βc . (III.4)

The nonzero maximal minors of M involve at most one of the first n − k columns, so they are
indexed by k-tuples of the form

[i, ĵ] := (i, n− k + 1, . . . , n̂−k+j, . . . , n) ,

with i ∈ [n− k] and j ∈ [k], or of the form [n− k]c := (n− k + 1, . . . , n). Defining a1 := 1 and
b0 := 1, we have

M[i,̂j] =
1(

n−k+j
j−1

)ciaibk−j and M[n−k]c = bk .
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For any β ∈
(

[n]
n−k

)
we have

(Fn−k(t))β = det


tβ1−1 · · · tβn−k−1

(β1 − 1)tβ1−2 · · · (βn−k − 1)tβn−k−2

...
...

(β1−1)!
(β1−n+k)!

tβ1−n+k · · · (βn−k−1)!

(βn−k−n+k)!
tβn−k−n+k



= t||β|| det


1 · · · 1

β1 − 1 · · · βn−k − 1
...

...
(β1−1)!

(β1−n+k)!
· · · (βn−k−1)!

(βn−k−n+k)!

 ,

where ||β|| := k(n − k) − |β| is the dimension of Xβ(t) ⊂ Gr(n − k,Cn). So (Fn−k(t))β is t||β||

times the Van der Monde determinant,

(Fn−k(t))β = t||β||
∏
i<j

((βj − 1)− (βi − 1)) = t||β||
∏
i<j

(βj − βi) .

Thus the determinant (Fn−k(t))[i,̂j]c is

tn−k+j−i1!2! · · · (i− 2)!
i!

1

(i+ 1)!

2
· · · (n− k − 1)!

n− k − i
(n− k + j)!

(j − 1)!

1

n− k + j − i
,

which implies

M[i,̂j](Fn−k(t))[i,̂j]c = (−1)ntn−k+j−i 1

n− k + j − i
aibk−j .

Referring back to (III.4), we see

det

(
M

Fn−k(t)

)
= (−1)k(n−k)(−1)|[n−k]c|M[n−k]c(Fn−k(t))[n−k]

+(−1)k(n−k)

n−k∑
i=1

k∑
j=1

(−1)|[i,̂j]|M[i,̂j](Fn−k(t))[i,̂j]c

= bk + (−1)n
n−k∑
i=1

k∑
j=1

(−t)n−k+j−i 1
n−k+j−iaibk−j =: f(t) .

Taking the derivative of f(t) yields

(−1)n
n−k∑
i=1

k∑
j=1

(−1)(−t)n−k+j−i−1aibk−j ,
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which may be factored,

f ′(t) = (−1)n

(
n−k∑
i=1

(−t)n−k−iai

)(
k∑
j=1

(−t)j−1bk−j

)
=: A(t)B(t) , (III.5)

so that A(t) and B(t) are uniquely defined monic polynomials with coefficients (−1)i−1ai and
(−1)ibi respectively. The coefficients a2, . . . , an−k, b1, . . . , bk are coordinates of a solution to the
instance X of α from Equation (III.3) if and only if f(t) has roots at t2, . . . , tn. There are no
other roots, because #{t2, . . . , tn} = k(n−k)−| | = n−1 = deg f(t). A solution to an instance
of X corresponds to a real polynomial f(t) with r real roots. Applying Rolle’s Theorem, we
see that f ′(t) has at least r − 1 real roots.

The polynomials A(t) and B(t) have all coefficients real if and only if ai, bj ∈ R for all i, j (bk is
real because it is an integer multiple of f(0)). This implies the following.
Theorem III.4.2. Let X be the real osculating instance of α from Equation (III.3). The number
of real points in X is equal to the number of factorizations f ′(t) = A(t)B(t) from Equation
(III.5), such that A(t), B(t) are monic real polynomials of degree n− k − 1, k − 1 respectively.

Applying the action of GL(2,R) to the osculation points induces a real action on the solutions,
so our discussion involving t1 =∞ is general, and we have proven Theorem III.4.2. Soprunova
and Sottile [37] discovered the use of an auxiliary factorization problem to rule out possible
numbers of real solutions to geometric problems.

The polynomial f ′(t) in Theorem III.4.2 has degree n− 2, and it has at least r − 1 real roots,
where (1, r ) is the osculation type of X. Increasing the number of real roots of a polynomial
of fixed degree cannot decrease its number of real factorizations, so we have a lower bound on
the number of real solutions to X.
Corollary III.4.3. Let X be the real osculating instance of α from Equation (III.3). If X has
osculation type (1, r ), then the number of real points in X is at least the number of factorizations
of a monic real polynomial g(t) = a(t)b(t) of degree n−2 with r −1 real roots, such that a(t), b(t)
are monic real polynomials of degree n− k − 1, k − 1 respectively.

Furthermore, if k = 2p + 1 is odd and n = 2p + 2q + 2 is even, then the number of real points
in X is at least

(
p+q
p

)
, regardless of osculation type.

Proof. We have already proven the first statement. For the second statement, we observe that
if f ′(t) has no real roots, then it is a product of p+ q complex conjugate pairs of linear factors.
The factorization f ′(t) = A(t)B(t) from Equation (III.5) is real if and only if B(t) is the product
of p complex conjugate pairs of linear factors. This gives the stated lower bound.

If k is even or n is odd, then there may be no real factorizations of f ′(t), which implies the
trivial lower bound on the number of real points in X.
Example III.4.4. Consider the Schubert problem ( , 7) in Gr(2,C8), given in Table
III.1. The lower bounds in the table are given by counting factorizations of a monic real degree-
six polynomial f ′(t) into a monic real degree-five polynomial A(t) and a monic real degree-one
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Table III.4: Irregular gaps.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

0 37074 37074
2 0
4 66825 47271 114096
6 0
8 85080 30232 14517 129829
10 0
12 0
14 0
16 0
18 0
20 100000 14920 2943 1138 119001

Total 100000 100000 100000 100000 400000

Table III.5: Nontrivial lower bound.

# Real 5

Total
Solutions r = 5 r = 3 r = 1

0 0
2 64775 87783 152558
4 0
6 100000 35225 12217 147442

Total 100000 100000 100000 300000

polynomial B(t). Since f ′(t) has at least r − 1 real factors, there are
(
r −1

1

)
= r − 1 ways to

factor f ′(t) = A(t)B(t) with A,B real.
Example III.4.5. Consider the Schubert problem ( , 7) in Gr(4,C8), given in Table III.4.
The observed lower bounds are obtained by counting real factorizations of the degree six poly-
nomial f ′ into two monic degree three polynomials A,B. If r = 1, then f ′ may have no real
factors and thus no real cubic factor A, so the lower bound is zero.

If r = 3, then f ′ has at least two real factors w, x and two pairs of complex factors (y, y) and
(z, z). So f ′ has real factorizations given by A = wyy, wzz, xyy, xzz, so the lower bound is four.

Similar arguments show that r = 5 or 7 impose lower bounds 8 and 20.
Example III.4.6. Corollary III.4.3 asserts that every real osculating instance of ( , 5) in
Gr(3,C6) has at least two real solutions, and every real osculating instance of ( , 7) in
Gr(3,C8) has at least three real solutions. Indeed, we observe this in Tables III.5 and III.6
respectively.
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Table III.6: Another nontrivial lower bound.

# Real 7

Total
Solutions r = 7 r = 5 r = 3 r = 1

1 0
3 47274 76702 123976
5 0
7 77116 46912 21909 145937
9 0
11 0
13 0
15 100000 22884 5814 1389 130087

Total 100000 100000 100000 100000 400000

III.5 Gaps

Several of the Schubert problems we studied had unexpected gaps in the possible numbers of
real solutions. One may see this in Tables III.4–III.6. That we never have 12 or 16 solutions in
Table III.4 is particularly unexpected, as this problem satisfies a congruence modulo four, and
12 ≡ 16 ≡ 20 mod 4. The gaps in all three of these tables may be fully explained by Theorem
III.4.2. Proposition IV.3.7 from Chapter IV gives an alternative explanation for the congruence
modulo four observed in Tables III.4 and III.5 (but not for the congruence in Table III.6).

A solution to an instance of the Schubert problem given in Table III.4 is real if and only if its
coordinates are given by a real factorization f ′(t) = A(t)B(t) as in Theorem III.4.2. Since the
number r of real factors of f ′(t) is at least r − 1, we have r = r − 1, r + 1, . . . , 6. For each of
these r-values, the number of real solutions to X is exactly the lower bound of Corollary III.4.3
associated to the osculation type (1, r). Thus the set of lower bounds given by Corollary III.4.3
is the set of possible numbers of real points in X, given by Theorem III.4.2.

Similar analysis explains the gaps found in Tables III.5 and III.6. We give an example in a
Grassmannian of higher dimension.
Example III.5.1. Consider the Schubert condition for Gr(5, 10). The lower bounds of Corol-
lary III.4.3 corresponding to α = ( , n−1) are 6, 6, 14, 30, or 70. Thus any real osculating in-
stance of α has exactly 6, 14, 30, or 70 real solutions. The lower bound of 6 which is independent
of osculation type is an example of the nontrivial lower bound given by Corollary III.4.3. This
lower bound is the topological lower bound Σ( , ).

Let

· · ·

... =: λ(p, q)

be the skew-diagram with p boxes in the rightmost column and q boxes in the bottom row.
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Proposition III.5.2. Let p = k − 1 and q = n− k − 1. If p ≥ 2 or q ≥ 2, then∑
T∈SYT(λ(p,q))

sign(T ) =
∑

T∈SYT(λ(p,q−2))

sign(T ) +
∑

T∈SYT(λ(p−2,q))

sign(T ) .

Proof. We first observe that both sides of the equation are zero unless p and q are even. Thus
we only need to prove one base case p = q = 2 to use induction. For the base case, we observe∑

T∈SYT(λ(2,0))

sign(T ) +
∑

T∈SYT(λ(0,2))

sign(T ) = 1 + 1 = 2 .

To calculate
∑

T∈SYT(λ(2,2)) sign(T ), we compare the standard Young tableaux of the shape ,
of which there are six.

3 4
2
1

2 4
3
1

2 3
4
1

1 4
3
2

1 3
4
2

1 2
4
3

The first tableau pictured above has sign +1 by definition, and the others have signs −1, +1,
+1, −1, and +1 respectively. These sum to +2, proving the base case.

For the inductive step, we denote the two largest numbers appearing in a standard Young tableau
of shape λ(p, q) by Y := p+ q − 1 and Z := p+ q. Observe that Z occurs in the last box of the
single row of λ(p, q) or in the last box of the single column of λ(p, q). Similarly, Y occurs in one
of the last two boxes of either the single row or the single column. We draw the four possible
configurations of the numbers Y,Z is a standard Young tableau of shape λ(p, q).

Z
Y

Y
Z

Y Z
Z
Y

Let T1 ⊂ SYT(λ(p, q)) be the set of standard Young tableaux of the first type (Y appears in the
single column, and Z appears in the single row). Similarly, let T2, T3, T4 ⊂ SYT(λ) denote the
sets of tableaux of the second, third, and fourth types respectively. Since the tableaux of T2 are
obtained by applying the transposition Y↔ Z to T1, we have∑

T∈T1

sign(T ) +
∑
T∈T2

sign(T ) = 0 .

Therefore, we need only consider the parity of tableaux of the third and fourth types,∑
T∈SYT(λ(p,q))

sign(T ) =
∑
T∈T3

sign(T ) +
∑
T∈T4

sign(T ) .

40



Deleting the columns of tableaux in T3 which contain Y,Z gives a bijection

π3 : SYT(λ(p, q))→ SYT(λ(p, q − 2)) ,

which one immediately verifies has the property sign(π3(T )) = sign(T ) for T ∈ SYT(λ(p, q)).
Therefore, ∑

T∈SYT(λ(p,q))

sign(T ) =
∑

T∈SYT(λ(p,q−2))

sign(T ) +
∑
T∈T4

sign(T ) .

Deleting the rows of T ∈ T4 which contain Y,Z gives a bijection π4 : SYT(λ(p, q))→ SYT(λ(p−
2, q)). The standard filling of λ(p, q) has the same parity as the tableaux given by assigning
(1, 2, . . . , p− 2,Y,Z) to the column and (p− 1, p, . . . , p+ q− 1) to the row. Thus, sign(π4(T )) =
sign(T ) for T ∈ SYT(λ(p, q)), and we have our result.

The skew diagram λ(p, q) as a product of two chains, one of length p and one of length q.
Sottile and Soprunova studied products of chains and showed a connection between lower bounds
obtained by factorization and topological lower bounds [37]. The following is a corollary to
Proposition III.5.2.
Theorem III.5.3. Suppose k = 2p + 1 is odd, n = 2p + 2q + 2 is even, and X is the real
osculating instance of α from Equation (III.3). The lower bound

(
p+q
p

)
on the number of real

points in X coincides with the topological lower bound Σ( , ).

There are Schubert problems α not of the form ( , n−1) whose frequency tables exhibit gaps,
sometimes apparently due to unexpected upper bounds on the numbers of real solutions for
instances of α with certain osculation types. Table III.7 reporting on the Schubert problem
( , , , , ) in Gr(4,C8) exhibits such behavior.

There are also problems with no gaps which have apparent upper bounds lower than the num-
ber of complex solutions for certain osculation types. Table III.8 exhibits remarkable upper
bounds for ( , , , , ) in Gr(3,C6). Unexpected upper bounds were far less common
than nontrivial lower bounds in the problems we tested.
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Table III.7: Unexpected upper bound.

# Real 2

Total
Solutions r = 2 r = 0

0 148450 148450
2 64662 64662
4 99465 99465
6 59 59
8 87364 87364
10 0
12 0
14 0
16 400000 400000

Total 400000 400000 800000

Table III.8: Unexpected lower bounds and upper bounds.

# Real
2 3

Solutions
r = 2 r = 2 r = 0 r = 0 Total
r = 3 r = 1 r = 3 r = 1

0 27855 17424 45279
2 11739 82576 100000 194315
4 22935 22935
6 100000 37471 137471

Total 100000 100000 100000 100000 400000

42



CHAPTER IV
A CONGRUENCE MODULO FOUR

Our report in Chapter III includes Schubert problems for which the number of real solutions is
fixed modulo four. Table III.3 representing the Schubert problem ( 9) in Gr(3,C6) and Table
III.4 representing ( , 7) in Gr(4,C8) exhibit this congruence. We observed this phenomenon
in several other problems sharing the property that each defining Schubert condition α satisfies
α = α⊥. We prove this congruence modulo four and thereby find new invariants in enumerative
real algebraic geometry. The proof uses a geometric involution that fixes Schubert varieties
Xα(t) ⊂ Gr(k, 2k) with α = α⊥. This chapter follows joint work with Sottile and Zelenko [19].

IV.1 The Lagrangian Grassmannian

We retain the notation of Chapters II and III. Throughout this chapter, n = 2k. We denote the
real points of a variety X by X(R).

Let J be a non-degenerate skew-symmetric 2k × 2k matrix with determinant 1. The matrix
J gives an isomorphism J : V ∗ → V defined by v 7→ (Jv)T . The symplectic group Sp(V )J is
the set of all elements h of SL(V ) which satisfy J = hJhT . Let 〈· , ·〉J denote a nondegenerate
alternating form on V , called a symplectic form,

〈u, v〉J := uJvT for u, v ∈ V .

Given an l-plane H ∈ Gr(l,C2k), let H∠ ∈ Gr(2k− l, V ) denote its skew-orthogonal complement
(with respect to J) in V ,

H∠ := JH⊥ .

Since 〈· , ·〉 is nondegenerate, dim(H) + dim(H∠) = 2k and (H∠)∠ = H for any linear subspace
H ⊂ V . We call a flag F• in V isotropic (with respect to J) if for F∠

i = F∠
2k−i for i < 2k.

Since n = 2k, there is an involution

∠ : Gr(k, V ) −→ Gr(k, V ) ,

given by H 7→ H∠, i.e. ∠ = J ◦ ⊥. A k-plane H ∈ Gr(k, V ) is Lagrangian (with respect to J) if
H = H∠. We note that if F• is an isotropic flag in V , then Fk is Lagrangian.
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Consider skew-symmetric 2k × 2k matrix

J̃ =



0 · · · 0 0 −1
...

... . .
.

0 · · · 0 −1 0
0 1 0 · · · 0

. .
. ...

...
1 0 0 · · · 0


with determinant 1 and the real parametrized rational normal curve

γ̃(t) =

(
1, t,

t2

2!
, . . . ,

tk

k!
,
(−1)1tk+1

(k + 1)!
, . . . ,

(−1)k−1t2k−1

(2k − 1)!

)
. (IV.1)

The flag F•(t) osculating γ̃ at γ̃(t) has basis (γ̃(t), γ̃′(t), . . . , γ̃(2k−1)). A calculation using Equa-
tion (IV.1) shows that if i < j, then

〈γ̃(i−1)(t), γ̃(j−1)(t)〉J̃ =

2k+1−i−j∑
l=0

(−1)i+j+l

(2k + 1− i− j)!
(

2k+1−i−j
l

)
.

If i+ j 6= 2k + 1 then the dot product is zero. Thus F•(t) is isotropic with respect to J̃ .

One may obtain any parametrized rational normal curve γ(t) by applying the right action of
g ∈ SL(V ) to γ̃(t), given by γ(t) = γ̃(t)g. If γ(t) is real, then g may be chosen to be real. The

skew-symmetric matrix J := g−1J̃(g−1)T with determinant 1 gives an isomorphism J : V ∗ → V .
All symplectic groups are conjugate by this action of SL(V ).

Henceforth, we fix a real g ∈ SL(V ), thus fixing a real curve γ(t) and a real matrix J which
identifies V ∗ with V . Thus we omit subscripts of J , writing 〈· , ·〉 and Sp(V ). To facilitate proofs,
we may use the real action of SL(V ) to give a particular curve γ(t) and a corresponding matrix
J .
Proposition IV.1.1. Osculating flags are isotropic.

Proof. Flags osculating the rational normal curve γ(t) are isotropic with respect to J , because

〈ug, vg〉 = ugJ(vg)T = uJ̃vT = 〈u, v〉J̃ .

The rest follows from our discussion above.

For X ⊂ Gr(k, V ), let X∠ denote the Lagrangian points of X, that is, the points fixed by ∠. The
Lagrangian Grassmannian LG(V ) is the subset of the Grassmannian consisting of Lagrangian
k-planes,

LG(V ) := Gr(k, V )∠ =
{
H ∈ Gr (k, V ) | H = H∠

}
.

We have observed that Gr(k, V ) is a homogeneous space for GL(V ). Since scaling generators
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does not affect their span, Gr(k, V ) is a homogeneous space for SL(V ) as well. The Lagrangian
Grassmannian is a homogeneous space of Sp(V ).
Proposition IV.1.2. The Lagrangian Grassmannian LG(V ) ⊂ Gr(k, V ) is a subvariety of
dimension

(
k+1

2

)
.

Proof. Without loss of generality, suppose

J =

(
0 − Idk

Idk 0

)
. (IV.2)

Recall definition (II.9) of the open cover G of the Grassmannian. For any α ∈
(

[2k]
k

)
, the

matrices of S(α) give coordinates for the dense open set Gα ⊂ Gr(k, V ). A matrix M ∈ S(α)
gives coordinates for a point in LG(V ) if an only if for any two rows u, v of M we have 〈u, v〉 = 0.
This gives k2 polynomial equations which establish LG(V ) ⊂ Gr(k, V ) as a subvariety.

One may choose α so that all of the equations given above are linear (α = [k], for example).
Since 〈u, v〉 = −〈v, u〉 there are

(
k
2

)
linearly independent equations defining LG(V ). Since

dim(S(α)) = k2, we have dim(LG(V )) = k2 −
(
k
2

)
=
(
k+1

2

)
.

Remark IV.1.3. One may choose a standard basis of V in such a way that the k × 2k matrix
[Idk |M ] of parameters with M symmetric give local coordinates for LG(V ).

Recall the definition of α⊥, and that the rows of d(α) are the columns of d(α⊥). Noting that
∠ = J ◦ ⊥, Proposition II.5.6 implies the following.
Proposition IV.1.4. Suppose F• is isotropic and α ∈

(
[2k]
k

)
. Then ∠(XαF•) = Xα⊥F•.

Definition IV.1.5. The Schubert condition α ∈
(

[2k]
k

)
is symmetric if α = α⊥. A Schubert

problem α is symmetric if each Schubert condition in α is symmetric.

For Gr(3,C6), we give diagrams of some symmetric Schubert conditions

d(3, 5, 6) = , d(2, 4, 6) = , d(2, 3, 6) = ,

and some non-symmetric Schubert conditions

d(1, 5, 6) = 6= , d(2, 4, 5) = 6= .

We give the key to proving the main theorems of this chapter.
Corollary IV.1.6. If α is a symmetric Schubert problem, and X is an osculating instance of
α, then X is stable under the Lagrangian involution, X∠ = X.

Proof. Proposition IV.1.1 asserts that the flags giving the instance X are isotropic. Thus Propo-
sition IV.1.4 establishes X as an intersection of Schubert varieties which are stable under ∠.
Therefore, X is stable under ∠.

Proposition IV.1.4 allows us to define Schubert varieties for the Lagrangian Grassmannian.
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Definition IV.1.7. Suppose F• is isotropic and α ∈
(

[2k]
k

)
is symmetric. Then YαF• := XαF• ∩

LG(V ) is a Lagrangian Schubert variety.

The length `(α) of a Schubert condition α ∈
(

[2k]
k

)
is the number of entries in α no greater than

k,
`(α) := #{αi ∈ α | αi ≤ k} .

The length `(α) is the number of boxes in the main diagonal of the Young diagram d(α), and
we may write `(d(α)) to denote `(α). We illustrate this by giving Young diagrams with their
main diagonals shaded:

`
( )

= 1 , `
( )

= 2 , `
( )

= 2 .

Proposition IV.1.8. Let α be a symmetric Schubert condition and F• an isotropic flag. The
codimension of YαF• in LG(V ) is

‖α‖ :=
|α|+ `(α)

2
.

Proof. Without loss of generality, we use the symplectic form defined by

J =

(
0 − Idk

Idk 0

)
, (IV.3)

and a corresponding isotropic flag F• which makes the codimension of YαF• apparent. Consider
the path p(α) defined in Proposition II.5.12 (the northeast to southwest path defining the lower
border of the Young diagram d(α)). We label the vertical edges of p(α) with elements of the
standard basis e1, . . . , ek from top to bottom, and we label the horizontal edges with ek+1, . . . , e2k

from left to right. Reading the labels along the path p(α) gives a basis f for a flag F•.

As an example, we draw the labeled path associated to the symmetric Schubert condition
(2, 5, 6, 8) ∈

(
[8]
4

)
.

e4
e5

e3

e2
e6 e7

e1
e8

Since α is symmetric, the ith vertical edge counting from the top is transposed with the ith
horizontal edge counting from the left, so reflecting the path along the antidiagonal transposes
ei with ei+k for i ∈ [k]. Equivalently, if fi = ej and f2k−i+1 = el then |j − l| = k. Thus
〈fi , fj〉 = δj,2k−i+1, and F• is isotropic.

Furthermore, YαF• has local coordinates like the Stiefel coordinates given by the matrix [Idk |M ]
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of parameters with M symmetric, such that the entries of M satisfy the equations

mij = 0 if j ≤ d(α)i ,

where d(α)i is the number of boxes in the ith row of the diagram d(α). Since M is symmetric,
we have Mij = Mji for all i and j. A calculation shows that these Stiefel-like coordinates have(
k+1

2

)
− |α|+`(α)

2
independent parameters. Since dim(LG(V )) =

(
k+1

2

)
, we have ‖α‖ = |α|+`(α)

2
.

We illustrate the coordinates defined in the proof of Proposition IV.1.8. The Schubert condition
α = (2, 5, 6, 8) has Young diagram

d(α) = ,

and the Lagrangian Schubert variety YαF• has local coordinates
1 0 0 0 m14

0 1 0 0 m22 m23 m24

0 0 1 0 m23 m33 m34

0 0 0 1 m14 m24 m34 m44

 ,

where denotes a coordinate in S(1, 2, 3, 4) on LG(V ) which is identically zero on YαF•. With
these coordinates, one may see that dim(YαF•) = 7 and ‖α‖ = 3. In general, ‖α‖ is the number
of boxes in and above the diagonal of (.α).

Given a list α = (α1, . . . , αm) of symmetric Schubert conditions for LG(V ), we define ‖α‖ :=
‖α1‖ + · · · + ‖αm‖. Kleiman’s Theorem (Proposition II.4.9) applies to Lagrangian Schubert
problems [22].
Proposition IV.1.9 (Lagrangian General Transversality). Let α = (α1, . . . , αm) be a list of
symmetric Schubert conditions for LG(V ). If F 1

• , . . . , F
m
• are general isotropic flags, then the

intersection
Y := Yα1F 1

• ∩ · · · ∩ YαmFm
• (IV.4)

in LG(V ) is generically transverse. In particular, if Y is nonempty, then codim(Y ) = ‖α‖.

If α is a list of symmetric Schubert problems with ‖α‖ =
(
k+1

2

)
, then α is called a Lagrangian

Schubert problem.

IV.2 Congruence Modulo Four via Independent Involutions

We find it useful to discuss sets of fixed points of the Grassmannian under different involutions.
The set of points fixed by complex conjugation in Gr(k, V ) is the real Grassmannian

RGr(k, V ) := Gr(k, V )(R) = Gr(k, V (R)) .

Using the local coordinates of Proposition IV.1.8, RGr(k, V ) is given by k× k matrices M with
the restriction that all entries are real.

Composing complex conjugation with ∠ gives another involution on Gr(k, V ), and we call its
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set of fixed points the Hermitian Grassmannian,

HG(V ) :=
{
H ∈ Gr(k, V ) | H = H

∠
}
.

We could alternatively define the Hermitian Grassmannian as the set of k-planes H with H =
H∠, since ∠ commutes with complex conjugation. The Hermitian Grassmannian has local
coordinates given by k × k Hermitian matrices.

The real Lagrangian k-planes are fixed by both complex conjugation and the Lagrangian invo-
lution. They form the real Lagrangian Grassmannian

RLG(V ) = RGr(k, V )∠ ,

which has local coordinates given by k × k real symmetric matrices. We observe that the real
Lagrangian Grassmannian may be defined in several equivalent ways,

RLG(V ) = RGr(k, V ) ∩ LG(V ) = RGr(k, V ) ∩ HG(V ) = LG(V ) ∩ HG(V ) .

Suppose X and Z are irreducible varieties of the same dimension, and f : X → Z is a dominant
map of degree d. The number of complex points in the fiber f−1(z) over a general point z ∈ Z is
d. Furthermore, if X and Z are real varieties and f is real, then the fiber f−1(z) over a real point
z ∈ Z(R) is a real variety, and for general z ∈ Z(R) the fiber f−1(z)(R) satisfies the congruence

#(f−1(z)(R)) ≡ #(f−1(z)) mod 2 ,

since nonreal points come in conjugate pairs. By degenerating to special fibers and counting
multiplicities, we see that this congruence holds for all z ∈ Z(R).

If X is equipped with an involution ∠ such that f ◦ ∠ = f , then the points of f−1(z) not fixed
by ∠ satisfy another congruence modulo two. We give a nondegeneracy condition which implies
that these two involutions are independent, giving a stronger congruence modulo four.
Proposition IV.2.1. Suppose X is an irreducible real variety with a real involution ∠, Z is a
real variety of the same dimension, and f : X → Z is a dominant real map such that f ◦∠ = f
and codimZ f(X∠) ≥ 2. If y, z ∈ Z(R) are general points in the same connected component of
Z(R), then

#(f−1(y)(R)) ≡ #(f−1(z)(R)) mod 4 .

Proof. We prove this for sufficiently general points y, z ∈ Z(R). By degenerating to special
fibers and counting multiplicities, this congruence holds for all real points y, z ∈ Z(R) in the
same connected component.

Since codimZ f(X∠) ≥ 2, there is a path Γ : [0, 1]→ Z(R) with Γ(0) = y and Γ(1) = z having a
finite set of critical values {c1, . . . , cr} =: C ⊂ (0, 1), such that Γ does not meet f(X∠). Taking
the closure, XΓ := closure(f−1(Γ([0, 1] \C))), we obtain a map fΓ : XΓ → [0, 1] having all fibers
finite and stable under conjugation. Let w ∈ Γ([0, 1]) and x ∈ f−1

Γ (w). Since the fiber f−1
Γ (w) is
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real and stable under ∠, we have that Ax := {x, x, x∠, x∠} ⊂ f−1(w). Thus x may be grouped
in one of the following ways:

(1) Ax = {x, x, x∠, x∠} contains four distinct points,

(2) Ax = {x = x, x∠ = x∠} contains two distinct real points,

(3) Ax = {x = x∠, x = x∠} contains two distinct Hermitian points,

(4) Ax = {x = x∠, x = x∠} contains two distinct Lagrangian points, or

(5) Ax = {x = x = x∠ = x∠} contains one real Lagrangian point.

Since the fibers over Γ contain no Lagrangian points, types (4) and (5) do not occur. The
number of points x of type (1), (2), or (3) respectively is locally constant on Γ([0, 1] \ C). So
as we vary w continuously, the number of real points in the fiber f−1(w) may only change at a
critical value c. It is forbidden that a Hermitian pair collides to a real point x0 with multiplicity
2 at ci, because such an x0 would be Lagrangian, and Γ([0, 1]) contains no Lagrangian points.
Thus points in the fiber may not pass from type (3) to type (2) or vice versa, and we see the
only way for the number of real points to change at c is for points in the fiber to change from
type (1) to type (2) or vice versa.

Suppose x ∈ f−1(c) is a real point in the fiber of the critical value c. Let a1(t), . . . , ap(t) be the
nonreal points of f−1(t) which collide to x as t approaches c from below. Let b1(t), . . . , bq(t) be
the nonreal points of f−1(t) which collide to x as t approaches c from above. Since the points
ai(t) for i ∈ [p] come in pairs, p is even. Similarly q is even, so q − p is even.

On the other hand, x∠ = x is in f−1(c). We have that a∠1 (t), . . . , a∠p (t) are the nonreal points
approaching x as t increases to c, and b∠1 (t), . . . , b∠q (t) are the nonreal points approaching x as t
decreases to c. Since 2(q − p) is a multiple of four, we have that the number of points changing
from type (1) to type (2) or vice versa is a multiple of four.

IV.3 A Congruence Modulo Four in Real Schubert Calculus

Consider the Schubert problem α = ( k2) in Gr(k, V ) involving the intersection of k2 hypersur-
face Schubert varieties. Schubert [34] calculated the number of complex points in an instance

of ( k2),

#k :=
(k2)!1! · · · (k − 1)!

k!(k + 1)! · · · (2k − 1)!
,

and Theorem II.6.10 implies that this is the number of complex points counting multiplicity in
a instance of ( k2) if the flags involved osculate a rational normal curve at distinct points.

More generally, we write #(α) to denote the number of complex points in an instance of a
Schubert problem α. We give one of the main results of this chapter.
Theorem IV.3.1. Suppose k ≥ 3 and n = 2k. Given a set of distinct points (t1, . . . , tk2) in P1,
stable under complex conjugation, the number of real points of the instance

X := X (t1) ∩ · · · ∩X (tk2)
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of the Schubert problem ( k2) is congruent to the number of complex points modulo four.

Proof. We make the assumption that the list t = (t1, . . . , tk2) is sufficiently general so that the
points of X are distinct. We observe that since the map has finite fibers the theorem holds for
all lists t counting multiplicities by a limiting argument.

We use the interpretation of X as an inverse Wronski problem, described in Section II.9, and we
show that f = Wr : Gr(k,C2k[t]) −→ PCk2+1[t] satisfies the hypotheses of Proposition IV.2.1.
Since Gr(k,C2k[t]) is smooth and connected, it is irreducible. The isomorphism J giving ∠ ◦ ⊥
is real, so ∠ is a real map. Complex conjugation on PCk2+1[t] is the usual complex conjugation
of coefficients. We have dim(Gr(k,C2k[t])) = k2 = dim(PCk2+1[t]).

By Theorem II.6.10, Wr is finite. Let H ∈ Gr(k,C2k[t]). By identifying the inverse Wronski
problem with intersections of osculating hypersurface Schubert varieties, we apply the key fact
of Corollary IV.1.6, and we have Wr ◦∠(H) = Wr(H). Since k ≥ 3, we have

dim(LG(C2k[t])) =
(
k+1

2

)
≤ k2 − 2 = dim(PCk2+1[t])− 2 ,

so codimPCk2+1[t] Wr(Gr(k,C2k[t])∠) ≥ 2. The points of PRk2+1[t] are connected, since they make
up the projective space of real polynomials.

Since Wr satisfies the hypotheses of Proposition IV.2.1, we have that the number of real points
in a fiber Wr−1(z) over z ∈ PRk2+1[t] is fixed modulo four. Sottile proved that there is a point
z ∈ PRk2+1[t] whose fiber Wr−1(z) has all #k points real [38]. Applying Proposition IV.2.1 we
have #(Wr−1(y)) ≡ #k mod 4 for any real y. Interpreting this as an intersection of Schubert
varieties, we have the congruence #(X(R)) ≡ #k mod 4.

Theorem IV.3.1 explains the congruence modulo four found in Table III.3, which presents data
for ( 9) in Gr(3,C6). Eventually, we prove a congruence for more general Schubert problems,
such as ( , 7) in Gr(4,C8) presented in Table III.4.
Corollary IV.3.2. Let k = 3 and n = 6. Given a set of distinct points (t1, . . . , t9) in P1, stable
under complex conjugation, the number of real points of the real osculating instance

X := X (t1) ∩ · · · ∩X (t9)

of the Schubert problem ( 9) is at least 2.

Proof. The number of complex points in X is #3 = 42. The corresponding topological lower
bound of Theorem II.9.1 on the number of real points is 0, because n = 2k is even. Since 2 ≡ 42
mod 4 is the least non-negative integer congruent to #3, it is a lower bound on the number of
real points in X. The data presented in Table III.3 found using symbolic means verify that the
lower bound 2 is sharp.

To generalize Theorem IV.3.1, we introduce the variety (P1)m6= consisting of m-tuples of distinct
points in P1. Let α = (α1, . . . , αm) be a Schubert problem and define Xα ⊂ Gr(k, V ) × (P1)m
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to be the closure of the variety

X◦ :=
{

(H, t) | t ∈ (P1)m6= , and H ∈ Xαi(ti) for i ∈ [m]
}
.

By Theorem II.6.10, the fibers of the projection X◦ → (P1)m6= are finite, so dim(X◦) = m. The
projection X◦ → (P1)m6= induces a projection Xα → (P1)m, and work of Purbhoo [30] shows that
every fiber of the induced projection contains #(α) points, counting multiplicities.

The variety Xα turns out to have the wrong real structure for our study of symmetrically
defined Schubert problems. When distinct osculation points ti 6= tj are associated to a common
Schubert condition αi = αj, we may have X := Xα1(t1) ∩ · · · ∩Xαm(tm) and H ∈ X both real,
but (H, t1, . . . , tm) ∈ Xα not real. To rectify this, we will a variety related to Xα by projecting
it to an auxiliary variety which forgets some of the order of the list (t1, . . . , tm).

Recall the exponential notation α̂a for a Schubert problem, introduced in Chapter III. Given
an exponent vector a whose entries sum to m, and setting the convention a0 := 0, we give an
equivalence relation ∼ which separates t into blocks of size a1, . . . , ap, forgetting the order of
the points ti ∈ P1 within each block. Formally, we define ∼ on (P1)m6= by t = (t1, . . . , tm) ∼
(s1, . . . , sm) =: s if

{ta0+···+ai−1+1, . . . , ta0+···+ai} = {sa0+···+ai−1+1, . . . , sa0+···+ai} , for i ∈ [p] ,

as sets.
Example IV.3.3. Let a = (1, 2, 2). We give a maximal set of equivalent points in (P1)5

6=, using
vertical lines to separate the blocks given by a:

(0 | 1,∞| 2, 5) ∼ (0 |∞, 1 | 2, 5) ∼ (0 | 1,∞| 5, 2) ∼ (0 |∞, 1 | 5, 2) .

Definition IV.3.4. By realizing the entries in the ith block of (P1)m6= as roots of a polynomial
fi of degree ai we have

Pa :=
(P1)m6=
∼
⊂

p∏
i=1

Pai ,

where the usual coordinates in Pai are the coefficients of fi. The inclusion is as a dense open
subset.

Suppose α contains m Schubert conditions, and α̂a contains p distinct Schubert conditions,
and assume they give the same Schubert problem. We say α is sorted with respect to α̂ if for
1 ≤ i < j ≤ p, each occurrence of α̂i precedes each occurrence of α̂j in α.
Definition IV.3.5. Let α̂a be the exponential representation of a Schubert problem α = (α1, . . . , αm),

and assume α is sorted with respect to α̂. We define X̂α ⊂ Gr(k, V ) × Pa to be the closure of
the variety

{(H, t) | t ∈ Pa , and H ∈ Xαi(ti) for i ∈ [m]} .

This is well defined, because α is stable under the permutation mapping t to s ∼ t.

We may define X̂α when α is not sorted with respect to α̂. We use this more general definition,
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but we do not give the technical details since they are straightforward but unenlightening.

As a direct consequence of Corollary III.1.3, X := Xα1(t1) ∩ · · · ∩ Xαm(tm) is a real variety if
and only if (t1, . . . , tm) ∼ (t1, . . . , tm), that is, if and only if t is real in Pa. Thus we have the

desired property that X and H ∈ X are simultaneously real if and only if (H, t1, . . . , tm) ∈ X̂α

is real. Theorem II.6.10 implies that each fiber of

π : X̂α −→ Pa

has #(α) points. Thus we generalize Theorem IV.3.1.
Theorem IV.3.6. Suppose α = (α1, . . . , αm) is a symmetric Schubert problem, and t ∈ (P1)m6= .

If codim(π((X̂α)∠)) ≥ 2 and the instance

X := Xα1(t1) ∩ · · · ∩Xαm(tm)

of α is real, then the number of real points in X is congruent to #(α) modulo four, counting
multiplicities.

Since proving the subtle relation codim(π((Xα)∠)) ≥ 2 may be difficult, we give a weaker
statement which arises from calculating a lower bound on codim(π((Xα)∠)).
Proposition IV.3.7. Suppose α = (α1, . . . , αm) is a symmetric Schubert problem containing
no trivial Schubert condition α with |α| = 0, t ∈ (P1)m6= , and for some distinct i, j, l ∈ [m] either

αi = αj = αl or αi 6= αj. If

m−
(
k+1

2

)
+ ‖αi‖+ ‖αj‖ − 2 ≥ 2 , (IV.5)

and the instance
X := Xα1(t1) ∩ · · · ∩Xαm(tm)

of α is real, then the number of real points in X is congruent to #(α) modulo four, counting
multiplicities.

Proof. Our goal is to apply Proposition IV.2.1. To do this, we describe a dense open subset

X̂α

◦
⊂ X̂α for which π((X̂α

◦
)∠) has at least codimension two, and π((X̂α

◦
))(R) is connected.

Suppose the Schubert problem α has exponential representation α̂a with p distinct Schubert
conditions. We have a commuting diagram of maps

X◦α

ρ
""DD

DD
DD

DD
D

φ //

ρ̃

xxqqqqqqqqqqqq X̂α

π

��
(P1)2

6= × (P1)m−2
ι

// (P1)m
ψ

// Pa

,

where ρ̃ is given by (H, s1, . . . , sm) 7→ (si, sj, s1, . . . , ŝi, . . . , ŝj, . . . , sm), and X◦α is the dense open
subset of Xα consisting of points {s | si 6= sj}. The maps ρ̃, ρ, π have degree #(α), the maps
φ, ψ have degree

∏p
i=1 ai!, and ι is injective. Thus, each map has finite fibers.
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We claim that X̂α

◦
:= φ(X◦α) is a dense open subset of X̂α with the codimension condition

given above and that X̂α

◦
(R) is connected. To see this, we observe that the projection π′ :

X̂α

◦
→ Gr(k, V ) lifts along φ to a projection ρ′ : X◦α → Gr(k, V ) with finite fibers. These maps

commute with the Lagrangian involution, so we have a commuting diagram of maps between
the sets of fixed points,

(X◦α)∠

ρ′ $$III
III

III
I

φ // (X̂α

◦
)∠

π′zzttttttttt

LG(V )

.

These maps have finite fibers. For each r ∈ (P1)2
6= × (P1)m−2, we have

ρ′(ρ̃−1(r))∠ ⊂ Yαi(ri) ∩ Yαj(rj) .

Since ri 6= rj, we have

dim(Yαi(ri) ∩ Yαj(rj)) =
(
k+1

2

)
− ‖α1‖ − ‖α2‖ =: C .

The variety
Y := {(H, r) | r ∈ (P1)2

6= , H ∈ Yαi(ri) ∩ Yαj(rj)}

has dimension dim(Y ) = C+2, which implies (X̂α

◦
)∠ ⊂ (π′)−1(Y ) has dimension at most C+2.

Therefore, dim(π((X̂α

◦
)∠)) ≤ C + 2. By Inequality (IV.5),

codim(π((X̂α

◦
)∠)) ≥ m− C − 2 ≥ 2 .

Having established the codimension hypothesis of Proposition IV.2.1, it is enough to prove that

given two points y, z ∈ π(X̂α

◦
)(R), there is a real path connecting them. Thus we take a path

Γ : [0, 1]→ (P1)m such that ψ ◦ Γ is a real path connecting y and z, and we show that we may
require ri(x) 6= rj(x) for x ∈ [0, 1].

If we assume αi = αj = αl, then the projections ri(x), rj(x), rl(x) of x ∈ [0, 1] under Γ are roots
of a single polynomial fx given in Definition IV.3.4. Since deg(fx) ≥ 3, we may choose Γ so that
ri(x) 6= rj(x) for x ∈ [0, 1] with ψ ◦ Γ real. On the other hand, if αi 6= αj, then ri(x), rj(x) are
roots of different polynomials. Again, we may choose Γ so that ri(x) 6= rj(x) for x ∈ [0, 1] with
ψ ◦ Γ real.

Applying Proposition IV.2.1, we see the number of real points in X(s) is fixed modulo four. The
Mukhin-Tarasov-Varchenko Theorem II.7.1 gives s such that X(s) has all #(α) solutions real.
Thus we have #(X(R)) ≡ #(α) mod 4.

Proposition IV.3.7 proves the congruence modulo four for some of the problems we studied
computationally, reported in Chapter III.
Example IV.3.8. In Chapter III, we proved that real osculating instances of

(
, 7

)
in

Gr(4,C8) have 20 mod 4 real solutions by counting real factorizations of a real polynomial.
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Table III.4 gives data for this problem.

Proposition IV.3.7 gives another proof for this congruence modulo four, since

8−
(

5

2

)
+
∥∥∥ ∥∥∥+ ‖ ‖ − 2 = 8− 10 + 6 + 1− 2 = 3 ≥ 2 .

Example IV.3.9. Consider the Schubert problem
(

, 8
)

in Gr(4,C8) with 90 complex solu-
tions. We solved 100, 000 instances of

(
, 8

)
, and in each instance we observed 90 mod 4

real solutions. Proposition IV.3.7 proves this congruence modulo four, since

9−
(

5

2

)
+
∥∥∥ ∥∥∥+ ‖ ‖ − 2 = 9− 10 + 5 + 1− 2 = 3 ≥ 2 .

Since two is the least positive integer congruent to 90 modulo four, two is a lower bound for the
number of real solutions to a real osculating instance of

(
, 8

)
. In our computations, we have

found 5853 real osculating instances of
(

, 8
)

with exactly two real solutions, so the lower
bound of two is sharp. The previously known topological lower bound from Theorem II.9.1 was
zero.
Example IV.3.10. Consider the Schubert problem

(
, , 8

)
in Gr(4,C8) with 426 complex

solutions. Every real osculating instance of
(

, , 8
)

has 426 mod 4 real solutions by Propo-
sition IV.3.7, since

10−
(

5

2

)
+
∥∥∥ ∥∥∥+

∥∥ ∥∥− 2 = 10− 10 + 3 + 2− 2 = 3 ≥ 2 .

Since two is the least positive integer congruent to 426 modulo four, two is a lower bound for
the number of real solutions to a real osculating instance of

(
, , 8

)
. The previously known

topological lower bound from Theorem II.9.1 was zero. We do not yet know if two is the sharp
lower bound.
Corollary IV.3.11. Let α = (α, β, m) be a symmetric Schubert problem with #(α) 6≡ 0
mod 4 and X be a real osculating instance of α. Suppose the hypotheses of Proposition IV.3.7
are satisfied by α. If the number of boxes above the main diagonal of the skew Young diagram
d((β)′/α) is odd, then two is a lower bound for the number of real solutions to X. The previously
known topological lower bound for such a problem was Σ(α, β) = 0.

Proof. The only parts of Corollary IV.3.11 that do not follow immediately from Proposition
IV.3.7 are the assertion Σ(α, β) = 0 and the implicit assertion that #(α) is even.

The sign imbalance Σ(α, β) as defined in Proposition III.3.6 may be calculated by observing that
every standard Young tableau of shape d((β)′/α) may be uniquely paired with another standard
Young tableau of the same shape by reflecting the tableau along the main diagonal. We give an

54



example of paired tableaux with opposite signs.

1 2
3 4 5
6 7

←→
3 6

1 4 7
2 5

This operation is an odd permutation, since there are an odd number of boxes above the diagonal,
so the paired tableaux have opposite signs. This implies that Σ(α, β) = 0.

Since #(α) is the number of tableaux of shape d((β)′/α), and since the number tableaux with
sign +1 equals the number of tableaux with sign −1, #(α) is even.

Proposition IV.3.7 is highly technical, and we believe a stronger, simpler statement is true.
Assuming one may generalize the dimensional transversality theorem of Eisenbud and Harris,
Theorem II.6.10, to intersections of Schubert varieties in a Lagrangian Grassmannian, one could
easily calculate the codimension involved in Theorem IV.3.6 using combinatorial data. This
would give the following result.
Conjecture IV.3.12. Let X be a real osculating instance of a symmetric Schubert problem α
in Gr(k, V ). If

‖α‖ −
(
k+1

2

)
≥ 2 , (IV.6)

then the number of real points in X satisfies the congruence #(X(R)) ≡ #(α) mod 4.

By permuting the entries of α, we may assume i = 1 and j = 2 in Inequality IV.5. Since none
of the Schubert conditions in α is trivial, we have

‖α3‖+ · · ·+ ‖αm‖ ≥ m− 2 .

This implies ‖α‖−
(
k+1

2

)
≥ m−

(
k+1

2

)
+ ‖α1‖+ ‖α2‖− 2. Therefore, assuming Inequality (IV.5)

gives Inequality (IV.6). Thus Conjecture IV.3.12 implies Proposition IV.3.7.

IV.4 Support for Conjecture IV.3.12

We used supercomputers to study all 44 nontrivial symmetric Schubert problem α on Gr(k, V )
with k ≤ 4 and #(α) ≤ 96. Ten of these Schubert problems satisfy the hypotheses of Propo-
sition IV.3.7 (and thus the hypotheses of Conjecture IV.3.12), and we observed the expected
congruence modulo four. We gave the data for two of these problems in Tables III.3 and III.4.

We studied 11 symmetric Schubert problems which satisfy the hypotheses of Conjecture IV.3.12
but not those of Proposition IV.3.7. In each of these problems, the conjectured congruence was
observed.
Example IV.4.1. Consider the symmetric Schubert problem ( 4) for k = 4. This problem does
not satisfy Inequality (IV.5) of Proposition IV.3.7,

4−
(

5

2

)
+
∥∥ ∥∥+

∥∥ ∥∥− 2 = 4− 10 + 3 + 3− 2 = −2 6≥ 2 .
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Table IV.1: Support for Conjecture IV.3.12.

# Real 4

Total
Solutions r = 4 r = 2 r = 0

0 0
2 687 687
4 0
6 1000 313 1000 2313

Total 1000 1000 1000 3000

However, we see that Inequality (IV.6) is satisfied,

4 ·
∥∥ ∥∥− (4 + 1

2

)
= 4 · 3− 10 = 2 ≥ 2 .

Thus Conjecture IV.3.12 claims that the number of real solutions is fixed modulo four. We
verified this claim for 3, 000 examples, giving the data in Table IV.1. These data consumed
1.486 GHz-years of processing power.

Indeed this Schubert problem cannot be a counter example to Conjecture IV.3.12. The computa-
tional study [12] of Schubert problems given by secant flags (a generalization of osculating flags)
uncovered the congruence modulo four for real instances of ( 4). This problem was analyzed
the congruence we observe for this problem was proven for all real instances of ( 4), including
those which are not osculating instances.

We tested 23 symmetric Schubert problems which do not satisfy the hypotheses of Conjecture
IV.3.12. Nineteen of these problems, including the problem of four lines ( 4) with k = 2, did
not exhibit a congruence modulo four.
Example IV.4.2. The symmetric Schubert problem ( 2, 3) in Gr(3,C6) does not satisfy In-
equality (IV.6),

2 ·
∥∥ ∥∥+ 3 · ‖ ‖ −

(
3 + 1

2

)
= 2 · 2 + 3 · 1− 6 = 1 6≥ 2 ,

so it cannot satisfy the more restrictive Inequality (IV.5). The results of symbolic computations
displayed in Table III.8 show that the number of real solutions to real instances of this problem
is not fixed modulo four.

Four of the 44 symmetric Schubert problems tested do not satisfy the hypotheses of Conjecture
IV.3.12, but exhibit a congruence modulo four on the number of real solutions. Tables IV.2–IV.5
present data collected for these four problems. The values of ‖α‖ for these problems are 10, 11,
11, and 11 respectively, but a symmetric problem α in Gr(4,C8) must have ‖α‖ ≥ 12 to satisfy
the hypotheses of Conjecture IV.3.12.
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Table IV.2: Congruence not implied by Conjecture IV.3.12.

# Real
2 2

Total
Solutions

r = 2 r = 2 r = 0 r = 0
r = 2 r = 0 r = 2 r = 0

0 73716 73895 147611
2 0
4 26284 26105 100000 152389
6 0
8 100000 100000

Total 100000 100000 100000 100000 400000

Table IV.3: Another congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 160337 160337
2 0
4 39663 39663
6 0
8 200000 200000

Total 200000 200000 400000

Table IV.4: A third congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 142275 142275
2 0
4 200000 57725 257725

Total 200000 200000 400000

Table IV.5: A fourth congruence not implied by Conjecture IV.3.12.

# Real 2

Total
Solutions r = 2 r = 0

0 0
2 200000 200000 400000

Total 200000 200000 400000
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CHAPTER V
A SQUARE FORMULATION VIA DUALITY

We say a system of equations is square if it has the same number of equations as variables, and
overdetermined if it has more equations than variables. The classical determinantal formulation
of an instance of a Schubert problem given by Proposition II.3.14 is overdetermined if more than
two of the Schubert varieties involved are given by Schubert conditions other than . Following
joint work with Hauenstein and Sottile [15], we realize an intersection X of Schubert varieties
in a larger space so that it is the solution set to a system of polynomial equations, and the
number of equations is equal to the codimension of X in the larger space. If X is an instance of
a Schubert problem, this gives a square system and allows one to use algorithms from Smale’s
α-theory to verify approximate solutions obtained by numerical methods [35]. This procedure
replaces determinantal equations of degree min(k, n− k) by bilinear equations.

V.1 Background

Computational studies have used Gröbner bases to produce compelling conjectures in Schubert
calculus [12, 14, 31, 33, 39], some of which have been proven [10, 19, 28, 29]. The use of Gröbner
bases in these computational studies has the advantage that it produces exact information, and
the steps taken to produce that information are inherently a proof of correctness. This rigidity
is partially responsible for the complexity of calculating a Gröbner basis [27], which is limiting
even for zero-dimensional ideals [13]. Gröbner basis calculations do not not appear to scale well
when parallelized [24], and this makes it difficult to efficiently use modern parallel computing
to mitigate their computational complexity. Calculating the Gröbner basis of an instance of a
typical Schubert problem with more than 100 solutions or involving more than 16 variables is
infeasible in characteristic zero.

Numerical and symbolic methods are subject to different computational bottlenecks, so parallel
numerical methods, such as those using a parameter homotopy [36], offer an alternative to sym-
bolic methods for solving Schubert problems beyond the scope of symbolic computation. There
are optimized numerical algorithms for Schubert problems, such as the Pieri homotopy algorithm
[21], which has successfully solved instances of a Schubert problem with 17,589 solutions [26].
There is work being done to develop a more general Littlewood-Richardson homotopy [25, 41]
based on Vakil’s geometric Littlewood-Richardson rule [42]. While not optimized for Schubert
calculus, regeneration [16] offers a numerical approach for Schubert problems that extends to
flag varieties, natural generalizations of the Grassmannian.

Numerical methods generally do not give exact solutions, and the approximations given are not
guaranteed to be correct. When a computer verifies the correctness of numerical output, we
say that the output has a certificate of validity. We say that an approximate solution with a
certificate is certified.

Newton’s method for expressing a root of a univariate polynomial as the limit of a sequence of
approximations has a generalization giving a solution to a square system of polynomial equations
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as a limit. Let E = (E1, . . . , Ep) be a vector of polynomials in the variables v = (v1, . . . , vp),
and consider x ∈ Cp as a vector. We define the Jacobian of E at x,

JacE(x) :=


∂E1

∂x1
· · · ∂E1

∂xp
...

...
∂Ep
∂x1

· · · ∂Ep
∂xp

 .

We set N0(x) := x and define the ith Newton iteration Ni(x) ∈ Cp for i > 0,

Ni(x) := Ni−1 − JacE(Ni−1(x))−1E(Ni−1(x)) .

Definition V.1.1. Let N∞(x) := limi→∞Ni(x). The sequence of Newton iterations {Ni(x)} of
x ∈ Cp converges quadratically to a solution of E if for every i > 0,

|Ni+1(x)−N∞(x)| ≤ 1

22i−1
|x−N∞(x)| ,

where |·| denotes the distance norm in Cp. The sequence of Newton iterations converges quadrat-
ically if the number of significant digits doubles with each step. In this case, x is called an
approximate solution to E with associated solution N∞(x).

There is a positive number α(x,E) > 0 depending on a point and system of equations so that if

α(x,E) <
13− 3

√
17

4

then x is an approximate solution to E [3, Ch. 8]. Smale studied convergence of Newton itera-
tions and established α-theory to certify quadratic convergence and thus approximate solutions.
Sottile and Hauenstein showed that given an approximate solution x, algorithms from α-theory
may be used to determine whether its associated solution is real [17]. Given two approximate
solutions, one may also determine whether their associated solutions are distinct. These appli-
cations require that E be a square system [7]. Schubert problems are famously overdetermined,
and the main goal of this chapter is to formulate them locally using square systems.

V.2 Primal-Dual Formulation

We present a way to formulate an instance of a Schubert problem in a Grassmannian as a square
system of equations. Recall the Stiefel coordinates Ŝ(α) dual to the local coordinates S(α⊥) on

Gr(k, V ) and Ŝα from Definition II.6 dual to the local coordinates Sα⊥ for Xα⊥F•. There are
also coordinates for an intersection of Schubert varieties, dual to Sβα.

Definition V.2.1. Let Ŝβα ⊂ Matn×(n−k) be the set of matrices with entries mi,j satisfying

mi,j = 1 if i = n+ 1− αj , and mi,j = 0 if i < n+ 1− αj or i > βn−k−j+1 .

The matrices Ŝβα give Stiefel coordinates for XαF
1
• ∩XβF

2
• ⊂ Gr(n− k, V ∗).
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Example V.2.2. Let n = 7, and consider the Grassmannian Gr(4, V ∗) and the Schubert con-

ditions α = (2, 4, 5, 7) and β = (3, 4, 6, 7). The coordinates Ŝβα are given by matrices of the
form 

0 0 0 1
0 0 0 m24

0 0 1 m34

0 1 m43 0
0 m52 0 0
1 m62 0 0
m71 0 0 0


.

By Corollary II.3.18, the classical determinantal formulation of XαF• requires more than |α|
equations, unless it is given by the Schubert condition . Thus an instance of a Schubert problem
α = (α1, . . . , αm) such that αi 6= for some i ∈ [m] is the solution set to an overdetermined
system in its classical determinantal formulation in local coordinates S(α) for Gr(k, V ). However,
the coordinates Sα give XαF• ⊂ Gr(k, V ) by setting |α| variables equal to zero in the coordinates
S(α).
Example V.2.3. Consider the Grassmannian Gr(3,C7) and d(2, 5, 7) = . We give coordi-
nates S( ) of Gr(3, V ) and S of X F• respectively,m11 1 m13 m14 0 m16 0

m11 0 m13 m14 1 m16 0
m11 0 m13 m14 0 m16 1

 and

m11 1 0 0
m11 0 m13 m14 1 0
m11 0 m13 m14 0 m16 1

 ,

where denotes a coordinate which is identically zero.

Similarly, if F 1
• and F 2

• are in linear general position, Sβα parametrizes a dense open subset of
XαF

1
• ∩XβF

2
• using dim(XαF

1
• ∩XβF

2
• ) coordinates.

Recall the map ⊥ : Gr(k, V )→ Gr(n− k, V ∗) given by mapping a k-plane H to its annihilator
H 7→ H⊥.
Definition V.2.4. Let ∆: Gr(k, V )→ Gr(k, V )×Gr(n−k, V ∗) be the dual diagonal map given
by H 7→ (H,H⊥).
Proposition V.2.5. Let A,B ⊂ Gr(k, V ) be subsets. Then we have the equality of sets

∆(A ∩B) = (A×⊥(B)) ∩∆(Gr(k, V )) .

Proof. This is a dual version of the classical argument of reduction to the diagonal. Abbreviating
∆G := ∆(Gr(k, V )), we observe

∆(A) = (A×⊥(A)) ∩∆G = (A×⊥(Gr(n− k, V ∗))) ∩∆G .

Similarly, we have

∆(B) = (B ×⊥(B)) ∩∆G = (Gr(k, V )×⊥(B)) ∩∆G .
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Together, these give

∆(A ∩B) = ∆(A) ∩∆(B) = (A×⊥(B)) ∩∆G .

We call ∆(A ∩ B) the primal-dual formulation of A ∩ B. We call the first factor of ∆(A ∩ B)
the primal factor and the second factor of ∆(A ∩B) the dual factor.

This gives us a new way to exhibit an intersection X of two Schubert varieties. Let M be a
k × n matrix of kn indeterminates, giving global Stiefel coordinates for Gr(k, V ) with respect
to the standard basis e of V , and let N be a n × (n − k) matrix of n(n − k) indeterminates,
giving global Stiefel coordinates for Gr(n− k, V ∗) with respect to the dual basis e∗ of V ∗. Then
the rows of M span a point in Gr(k, V ), the columns of N span a point in Gr(n − k, V ∗), and
∆(Gr(k, V )) is the solution set to the matrix equation

MN = 0k×(n−k) ,

where 0k×(n−k) denotes the k× (n−k) zero matrix. This equation consists of k(n−k) equations
which are bilinear in the entries of M and N .

Suppose F 1
• and F 2

• are flags, and α, β ∈
(

[n]
k

)
. By Proposition V.2.5, we have

∆(XαF
1
• ∩XβF

2
• ) = (XαF

1
• ×Xβ⊥F

2⊥
• ) ∩∆(Gr(k, V )) .

Let F 1
• be a matrix that is a basis for the flag F 1

• . Recall that Sα gives coordinates for XαF
1
•

with respect to some basis f of V . Let Mα be a k× n matrix of indeterminates in Sα. A change
of basis for V from f to e induces a dual action on Stiefel coordinates, so the matrix product
MαF

1
• locally parametrizes XαF

1
• with respect to the standard basis e.

Let F̂ 2⊥
• be a basis for the flag F 2⊥

• , that is, the first i columns of the matrix F̂ 2⊥
• span F 2⊥

•
for all i. Let M̂β⊥ be a matrix of indeterminates in Ŝβ⊥ giving Stiefel coordinates for Xβ⊥F

2⊥
• .

By the argument above, the product F̂ 2⊥
• M̂β⊥ locally parametrizes Xβ⊥F

2⊥
• with respect to the

standard dual basis e∗. It follows that the matrix equation

MαF
1
• F̂

2⊥
• M̂β⊥ = 0k×(n−k) (V.1)

defines the dual diagonal ∆(XαF
1
• ∩XβF

2
• ) in XαF

1
• ×Xβ⊥F

2⊥
• .

Equation (V.1) gives k(n−k) equations defining the restriction of the dual diagonal ∆(Gr(k, V ))
to a dense open subset of XαF

1
• ×Xβ⊥F

2⊥
• . The equations are bilinear in k(n−k)−|α| variables

from Mα and n(n − k) variables from M̂β⊥. We describe the dense subset of XαF
1
• ×Xβ⊥F

2⊥
•

involved.

We used the action of GL(V ) to adapt the open cover G of the Grassmannian to the cover
G(t) from Definition II.6.8 so that Xα(t) ∩ Gα(t) is the dense open set parametrized by Stiefel
coordinates Sα. Given a flag F• whose basis is the matrix F•, we similarly adapt G to an open
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cover
GF• := {GαF

−1
• | α ∈

(
[n]
k

)
} .

This has the feature that XαF• ∩ GαF
−1
• is the dense open set parametrized by the Stiefel

coordinates Sα. Throughout this chapter, we use X◦αF• to denote this dense open set. Similarly,
we write (XαF• ∩ XβG•)

◦, X◦
α⊥F

⊥
• , and (Xα⊥F

⊥
• ∩ Xβ⊥G

⊥
• )◦ to denote the open dense sets

parametrized by Sβα, Ŝα⊥ , and Ŝβ
⊥

α⊥
respectively. The coordinates Ŝα⊥ and Ŝβ

⊥

α⊥
were chosen in a

way that yields

⊥(X◦αF•) = X◦α⊥F
⊥
• and ⊥(XαF• ∩XβG•)

◦ = (Xα⊥F
⊥
• ∩Xβ⊥G

⊥
• )◦ .

We have shown the following.
Proposition V.2.6. If XαF

1
• , XβF

2
• are Schubert varieties in Gr(k, V ), then we have the equality

∆(XαF
1
• ∩XβF

2
• ) = (XαF

1
• ×Xβ⊥F

2⊥
• ) ∩∆(Gr(k, V )) ,

as sets. Furthermore, ∆(X◦αF
1
• ∩ X◦βF 2

• ) is the solution set to the k(n − k) bilinear equations

given by Equation (V.1) in the coordinates (Sα, Ŝβ⊥).

More may be said with a straightforward dimension calculation.
Corollary V.2.7. If F 1

• , F
2
• are flags in Gr(k, V ) in linear general position and α, β ∈

(
[n]
k

)
satisfy αi + βk−i+1 ≤ n+ 1 for i ∈ [k], then the equations of Proposition V.2.6 define ∆(X◦αF

1
• ∩

X◦βF
2
• ) in X := X◦αF

1
• × X◦β⊥F

2⊥
• as the solution set to a system of codimX ∆(X◦αF

1
• ∩ X◦βF 2

• )
equations, and the projection to the primal factor

∆(X◦αF
1
• ∩X◦βF 2

• ) −→ X◦αF
1
• ∩X◦βF 2

•

gives a bijection of sets.

We note that αi + βk−i+1 ≤ n + 1 for i ∈ [k] is the condition that XαF
1
• ∩ XβF

2
• 6= ∅. We

may extend this method of obtaining a system of codimension-many equations to intersections
of more than two Schubert varieties.
Definition V.2.8. Let ∆m : Gr(k, V )→ Gr(k, V )×Gr(n− k, V ∗)× · · · ×Gr(n− k, V ∗) be the
map given by H 7→ (H,H2, . . . , Hm) such that Hi = H⊥ for 2 ≤ i ≤ m. We call ∆m the dual
diagonal map and observe that ∆ = ∆2.
Proposition V.2.9. Let A1, . . . , Am ⊂ Gr(k, V ) be subsets. Then

∆m(A1 ∩ · · · ∩ Am) = (A1 ×⊥(A2)× · · · × ⊥(Am)) ∩∆m(Gr(k, V )) .

The proof is omitted, since it is given by iterating the proof of Proposition V.2.5. This gives a
straightforward generalization of V.2.6.
Proposition V.2.10. If Xα1F 1

• , . . . , XαmF
m
• are Schubert varieties in Gr(k, V ), then the set

∆m(X◦α1F 1
• ∩ · · · ∩X◦αmFm

• ) is equal to

(X◦α1F 1
• ×X◦α2⊥F

2⊥
• × · · · ×X◦αm⊥F

m⊥
• ) ∩∆m(Gr(k, V )) ,
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and is the solution set to a system of k(n − k)(m − 1) bilinear equations in the coordinates

(Sα1 , Ŝα2⊥ , . . . , Ŝαm⊥).

The k(n− k)(m− 1) equations come from pairing the primal factor with each of the m− 1 dual
factors in Equation (V.1). Kleiman’s theorem, Proposition II.4.9, implies that if α is a Schubert
problem, and F 1

• , . . . , F
m
• are in general position, then

X◦α1F 1
• ∩ · · · ∩X◦αmFm

• = Xα1F 1
• ∩ · · · ∩XαmF

m
• .

More generally, if α is not a Schubert problem, but F 1
• , . . . , F

m
• are in general position, we still

have that
X◦α1F 1

• ∩ · · · ∩X◦αmFm
• ⊂ Xα1F 1

• ∩ · · · ∩XαmF
m
•

is dense. We give the result of a straightforward dimension calculation.
Theorem V.2.11. Suppose F 1

• , . . . , F
m
• are sufficiently general flags in V and α = (α1, . . . , αm)

is a list of Schubert conditions. The intersection

X := X◦α1F 1
• ∩ · · · ∩X◦αmFm

•

is the solution set to the bilinear equations of Proposition V.2.10. This involves formulating X
using k(n− k)(m− 1) equations in a space of dimension k(n− k)m− |α|.

In particular, if α is a Schubert problem, then X = Xα1F 1
• ∩ · · · ∩XαmF

m
• , and X is formulated

as the set of solutions to a square system of equations.

Using this formulation, we may certify approximate solutions to Schubert problems and therefore
may use numerical methods to study Schubert calculus from a pure mathematical point of view.
In some circumstances, this square formulation may lead to more efficient computation than
the determinantal formulation. We give an example comparing the classical system of equations
with the primal-dual system of equations.
Example V.2.12. Let α = (α1, . . . , α4) be the Schubert problem in Gr(4,C8) given by αi =
(2, 5, 7, 8) for i = 1, . . . , 4, and let F 1

• , . . . , F
4
• be flags in general position. We denote αi by its

Young diagram . The classical formulation of the instance

X := X F 1
• ∩ · · · ∩X F 4

•

of α uses determinantal equations in the coordinates S of X F 1
• . By Corollary II.3.18,

this formulation involves a system of 3 · 17 = 51 linearly independent quartic determinants
in 16− 4 = 12 variables.

The competing primal-dual formulation is a square system of bilinear equations in the coordinates(
S , Ŝ , Ŝ , Ŝ

)
of X F 1

• × X F 2⊥
• × X F 3⊥

• × X F 4⊥
• . This system involves 48 bilinear

equations in 48 variables.

A feature of the primal-dual formulation for an instance of a Schubert problem is that it requires
more variables than the classical formulation, but it typically lowers the degrees of the polyno-
mials which must be solved. If we have flags in linear general position, then we may reduce the
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number of variables and equations.
Example V.2.13. Let α = (α1, . . . , α4) be the Schubert problem for Gr(4,C8) given by αi =
(2, 5, 7, 8) for i = 1, . . . , 4, and let F 1

• , . . . , F
4
• be flags in general position. We denote αi by its

Young diagram . The classical formulation of the instance

X := X F 1
• ∩ · · · ∩X F 4

•

of α uses determinantal equations in the coordinates S of (X F 1
• ∩ X F 2

• )◦. By Corollary
II.3.18, this formulation involves a system of 2 · 17 = 34 linearly independent quartic determi-
nants in 16− 4− 4 = 8 variables.

The competing primal-dual formulation is a square system of bilinear equations in the coordinates(
S , Ŝ

)
of (X F 1

• ∩X F 2
• )◦×(X F 3⊥

• ∩X F 4⊥
• )◦. This system involves 16 bilinear equations

in 16 variables.
Proposition V.2.14. Suppose m ≥ 2 is even. If αi ∈

(
[n]
k

)
for i ∈ [m] and F i

• for i ∈ [m] are
flags in linear general position, then the set ∆m(Xα1F 1

• ∩ · · · ∩XαmF
m
• ) is equal toXα1F 1

• ∩Xα2F 2
• ×

m/2∏
i=2

Xα(2i−1)⊥F (2i−1)⊥
• ∩Xα2i⊥F 2i⊥

•

 ∩∆m/2(Gr(k, V ))

and is expressed locally as a system of k(n − k)(m/2 − 1) bilinear equations in the coordinates

(Sα
2

α1 , Ŝα
4⊥

α3⊥ , . . . , Ŝ
αm⊥

α(m−1)⊥).

With this proposition, we eliminate roughly half of the variables and equations needed to define
a Schubert problem with a square system.
Theorem V.2.15. Suppose m ≥ 2 is even, F 1

• , . . . , F
m
• are sufficiently general flags in Gr(k, V ),

and α = (α1, . . . , αm) is a list of Schubert conditions. The intersection

X := X◦α1F 1
• ∩ · · · ∩X◦αmFm

•

is the solution set to the bilinear equations of Proposition V.2.14. This involves formulating X
using k(n− k)(m/2− 1) equations by realizing it in a space of dimension k(n− k)m/2− |α|.

In particular, if α is a Schubert problem, then X = Xα1F 1
• ∩ · · · ∩XαmF

m
• , and X is formulated

as the set of solutions to a square system of equations.

We may use Theorem V.2.15 in the case wherem is odd by appending a trivial Schubert condition
αm+1 := (n− k + 1, . . . , n) to α.

Since X F• is a hypersurface defined by one determinant, we may formulate a Schubert problem
involving some hypersurface Schubert varieties using a square system involving fewer equations
and variables than suggested by Theorem V.2.15. We use the primal-dual formulation to ex-
press the intersection of non-hypersurface Schubert varieties and a determinant to define each
hypersurface in the primal factor.
Example V.2.16. Consider the Schubert problem ( 3, 4) in Gr(4,C8). Suppose F 1

• , . . . , F
7
•
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are general flags. We may express the instance

X := X F 1
• ∩ · · · ∩X F 3

• ∩X F 4
• ∩ · · · ∩X F 7

•

of ( 3, 4) by a system of determinantal equations in the local coordinates S on (X F 1
• ∩

X F 2
• )◦. By Corollary II.3.18, this formulation involves a system of 1 · 17 + 4 · 1 = 21 quartic

determinants in 16− 4− 4 = 8 variables.

The näıve competing primal-dual formulation is a square system of 48 bilinear equations in 48
variables.

Using a primal-dual formulation with X F 5
• ∩ X F 6

• ∩ X F 7
• defined by determinants in

the primal factor yields a square system of equations in the coordinates
(

S , Ŝ
)

of X F 1
• ∩

X F 2
• ×X F 3⊥

• ∩X F 4⊥
• consisting of 16 bilinear equations and 3 quartic determinants in 19

variables.

V.3 Flag Varieties

Many of the results of this chapter extend to Schubert problems more general than those in a
Grassmannian. As an example of this, we describe flag varieties, which are generalizations of
Grassmannians.

Fix a positive integer `, and let k := (0 < k1 < · · · < k` < n) be an increasing `-tuple of positive
integers less than n.
Definition V.3.1. The flag variety Fl(k;V ) is the set of `-tuples H of nested ki-planes,

Fl(k;V ) := {H | H1 ⊂ · · · ⊂ H` ⊂ V , dim(Hi) = ki for i ∈ [`]} .

If ` = 1, then Fl(k;V ) = Gr(k1, V ). We generalize the notion of a Schubert condition.
Definition V.3.2. Let α ∈

(
[n]
k

)
denote the set of permutations on [n] such that αi < αi+1 for

i ∈ [n] \ k. We call α ∈
(

[n]
k

)
a Schubert condition.

We give a few Schubert conditions for the flag variety Fl(2, 5;C7):

(3, 6 | 1, 2, 4 | 5, 7) , (6, 7 | 3, 4, 5 | 1, 2) , (1, 2 | 3, 4, 5 | 6, 7) .

We use a vertical line instead of a comma to denote positions where entries of α are allowed to
decrease.

Flag varieties have local coordinates similar to the Stiefel coordinates.
Definition V.3.3. Let α ∈

(
[n]
k

)
be a Schubert condition. The subset Sk(α) ⊂ Matk`×n is the

subset of matrices whose entries mij satisfy the condition,

mi,αj = δij for kp−1 + 1 ≤ i ≤ kp , 1 ≤ j ≤ kp ,

for p ∈ [`] with the convention k0 = 0. We call the coordinates given by these matrices the
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Stiefel coordinates.
Example V.3.4. Consider the flag variety Fl(2, 4; 6). Using ∗ to denote arbitrary entries, we
give arbitrary matrices in Sk(α) for α = (5, 6 | 3, 4) and α = (2, 4 | 1, 5) respectively,

∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 0 1
∗ ∗ 1 0 0 0
∗ ∗ 0 1 0 0

 and


∗ 1 ∗ 0 ∗ ∗
∗ 0 ∗ 1 ∗ ∗
1 0 ∗ 0 0 ∗
0 0 ∗ 0 1 ∗

 .

The 1 in position (i, αi) for i ∈ [k`] is called a pivot.

The proof that Gr(k, V ) is smooth extends to flag varieties.
Proposition V.3.5. The flag variety Fl(k;V ) is a smooth variety of dimension

dim(Fl(k;V )) =
∑̀
i=1

(ki − ki−1)(n− ki) ,

with the convention k0 = 0.
Definition V.3.6. Given a flag F• and α ∈

(
[n]
k

)
, we have a Schubert variety,

XαF• := {H ∈ Fl(k;V ) | dim(Hp ∩ Fαi) ≥ #{αj | j ≤ i , αj ≤ αi}
for p ∈ [`] , kp−1 + 1 ≤ i ≤ kp} ,

with the convention k0 = 0.

Schubert varieties in flag varieties have local coordinates similar to the Stiefel coordinates.
Definition V.3.7. Let α ∈

(
[n]
k

)
. The Stiefel coordinates of XαF• are given by the subset of

matrices (Sk)α ⊂ Sk(α) which satisfy the requirement that every entry to the right of a pivot is
zero.
Example V.3.8. Consider the flag variety Fl(2, 4; 6). Using ∗ to denote arbitrary entries,
we give arbitrary matrices in (Sk)α, which give coordinates for XαF•, for α = (5, 6 | 3, 4) and
α = (2, 4 | 1, 5) respectively,

∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 0 1
∗ ∗ 1 0 0 0
∗ ∗ 0 1 0 0

 and


∗ 1 0 0 0 0
∗ 0 ∗ 1 0 0
1 0 0 0 0 0
0 0 ∗ 0 1 0

 .

As in the Grassmannian case, one may count indeterminates to determine the dimension (or
codimension) of a Schubert variety in a flag variety. We write |α| to denote the codimension
of XαF• in Fl(k;V ). The Stiefel coordinates for XαF

1
• ∩ XβF

2
• do not have a straightforward

generalization for general flag varieties.

We extend properties of duality to flag varieties.
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Definition V.3.9. Let k⊥ denote the increasing `-tuple of integers defined as follows,

k⊥ := (0 < n− k` < · · · < n− k1 < n)

Recall that the duality between V and V ∗ gives a natural map ⊥ : Gr(k, V ) → Gr(n − k, V ∗)
defined by H 7→ H⊥. We may extend this map to a map from a flag variety to an associated
flag variety,

⊥ : Fl(k, V )→ Fl(k⊥, V ∗) ,

given by (H1, . . . , H`) 7→ (H⊥` , . . . , H
⊥
1 ).

Let α ∈
(

[n]
k⊥

)
. The dual Stiefel coordinates are the coordinates given by matrices in Ŝk(α) ⊂

Matn×k⊥` = Matn×(n−k1) with entries mij satisfying

mn−αi+1,j = δij for k⊥p−1 + 1 ≤ j ≤ k⊥p , 1 ≤ i ≤ k⊥p ,

for p ∈ [`] with the convention k0 = 0.

The coordinates given by Ŝk(α) parametrize Fl(k⊥;V ∗), as the first k⊥p columns parametrize a
k⊥p -plane Hp ∈ Gr(k⊥p , V

∗) for each p ∈ [`], and we have H1 ⊂ · · · ⊂ H`. This gives coordinates

for a dense subset of Fl(k⊥;V ∗), because the first k⊥p columns of the matrices in Ŝk(α) give
coordinates for a dense subset of Gr(k⊥p , V

∗) for each p ∈ [`].
Example V.3.10. Let n = 7. Consider the flag variety Fl(3, 4, 6;V ∗) associated to Fl(1, 3, 4;V ).

We give arbitrary matrices in (Ŝ(3,4,6))α that provide local coordinates for the flag variety, for
α = (5, 6, 7 | 4 | 2, 3) and α = (1, 3, 5 | 4 | 2, 7) respectively,

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 0 1
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ ∗


and



∗ ∗ ∗ ∗ 0 1
∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 0 0
∗ ∗ ∗ 1 0 0
0 1 0 0 0 0
∗ ∗ ∗ ∗ 1 0
1 0 0 0 0 0


.

For j ∈ [k`], the 1 in the (n− αj + 1, j) position is called a pivot.
Definition V.3.11. The dual Stiefel coordinates for the Schubert variety XαF• ⊂ Fl(k⊥;V ∗)

are the local coordinates given by the subset (Ŝk⊥)α ⊂ Ŝk⊥(α) consisting of matrices whose entries
above each pivot are zero.
Definition V.3.12. Let α ∈

(
[n]
k

)
be a Schubert condition. We define ω = (n, n− 1, . . . , 2, 1) to

be the longest permutation on [n]. The Schubert condition α⊥ ∈
(

[n]
k⊥

)
associated to α is given by

the composition of permutations,
α⊥ := ωαω .

Definition V.3.12 allows us to extend Proposition II.5.6 to Schubert varieties in a general flag
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variety.
Proposition V.3.13. If α ∈

(
[n]
k

)
then XαF• ∼= ⊥(XαF•) = Xα⊥F

⊥
• .

Example V.3.14. Let n = 7 and α = (4 | 2, 5 | 1, 6 | 3, 7) ∈
(

[7]
1,3,5

)
. We have an associated

Schubert condition α⊥ = (1, 5 | 2, 7 | 3, 6 | 4, ) ∈
(

[7]
2,4,6

)
. We give Stiefel coordinates (Sk)α and

(Ŝk⊥)α⊥ for XαF• and Xα⊥F
⊥
• respectively,


a b c 1 0 0 0
d 1 0 0 0 0 0
e 0 f 0 1 0 0
1 0 0 0 0 0 0
0 0 g 0 0 1 0

 and



0 0 0 1 0 0
0 0 0 −d 0 1
0 1 0 0 0 0
0 −c 0 −a 1 −b
0 −f 0 −e 0 0
0 −g 1 0 0 0
1 0 0 0 0 0


.

These parametrizations pair a point in XαF• with its dual in Xα⊥F
⊥
• .

Kleiman’s theorem of general transitivity applies to intersections in a flag variety [22].
Proposition V.3.15. Let α = (α1, . . . , αm) be a list of Schubert conditions for Fl(k;V ). If
F 1
• , . . . , F

m
• are general flags, then

X := Xα1F 1
• ∩ · · · ∩XαmF

m
• (V.2)

is generically transverse. That is, X = ∅ or codim(X) = |α1|+ · · ·+ |αm| =: |α|.

We say that α is a Schubert problem in Fl(k;V ) if X of Equation (V.2) has expected dimension
zero, that is, if |α| = dim(Fl(k;V )).

The proposition and theorems of Section V.2 which do not use the coordinates Sβα extend to flag
varieties. Thus we may formulate Schubert problems in flag varieties as solution sets to square
systems of bilinear equations.
Example V.3.16. Consider the flag variety Fl(2, 4;C6) which is 12-dimensional, general flags
F 1
• , . . . , F

4
• in V , and the Schubert condition α = (3, 6 | 2, 5 | 1, 4). We have |α| = 3, and

X := XαF
1
• ∩ · · · ∩XαF

4
•

contains 12 points. The relevant conditions characterizing (H1, H2) ∈ XαF
i
• are

dim(H1 ∩ F3) ≥ 1 , and dim(H2 ∩ F2) ≥ 1 .

Since dim(H1) = 2, the first relevant condition is given by 3 linearly independent quadratic
determinants. Since dim(H2) = 4, the second relevant condition is given by one maximal quartic
determinant. Using local coordinates for XαF

1
• , the classical determinantal formulation of X

involves 3 · 3 = 9 quadratic and 3 · 1 = 3 quartic equations in 12− 3 = 9 variables.

The alternative primal-dual formulation involves a square system of 36 bilinear equations in local
coordinates ((S(2,4))α, (S(2,4))α⊥ , (S(2,4))α⊥ , (S(2,4))α⊥). Note that k := (2, 4) implies k⊥ = (2, 4).
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CHAPTER VI
SUMMARY

In Chapter II, we gave background needed to understand our study in enumerative real algebraic
geometry. We outlined the history surrounding some theorems and conjectures in Schubert cal-
culus. The Mukhin-Tarasov-Varchenko Theorem is a surprisingly elegant result in enumerative
real algebraic geometry, which demonstrates that the enumerative theory of real Schubert cal-
culus is a rich field of study. This remarkable theorem was not generally accepted when it was
first conjectured, and computations played a large role in giving credence to it.

In recent years, supercomputers have been used to solve billions of polynomial systems in order to
investigate problems related to the Mukhin-Tarasov-Varchenko Theorem. These investigations
have lead to theorems and strongly supported conjectures. We continued this practice of studying
reality problems with the use of supercomputers.

In Chapter III, we described a study of Eremenko and Gabrielov, which used topological methods
to obtain lower bounds to the number of real points in a fiber of the Wronski map over a real
point. We realized this inverse Wronski problem as a problem in Schubert calculus and used
modern software tools to investigate these bounds from a more general point of view. We
discovered that the Eremenko-Gabrielov type lower bounds are often sharp. In some cases,
however, sharpness fails in an interesting way.

We solved over 339 million instances of 756 Schubert problems, using over 469 gigahertz-years of
processing power. While studying the data, we observed a remarkable congruence modulo four
in the number of real solutions to problems with certain symmetries, and this congruence was
the topic of Chapter IV. We also discovered a family of Schubert problems, which has unusual
gaps in the numbers of real solutions to real osculating instances. These relate to work of Sottile
and Soprunova, and we used their method of counting real factorizations of a real polynomial
to explain the observed lower bounds and gaps.

In Chapter IV, we proved a congruence modulo four in the number of real solutions to real
osculating instances of Schubert problems given by symmetric Schubert conditions. This work
affirmed the most surprising and compelling conjecture to come out of the computational project
described in Chapter III. One would typically expect the number of real solutions to a real os-
culating instance of a Schubert problem to be fixed modulo two, because nonreal solutions come
in pairs. We discovered that there is a Lagrangian involution which also acts on symmetric
Schubert problems. For a rich family of such problems, the Lagrangian involution and complex
conjugation are independent and the nonreal solutions come in sets of four. Establishing a con-
gruence modulo four on the number of real solutions to real osculating instances, we established
a new invariant in enumerative real algebraic geometry.

The work in Chapter III, and a lot of other work done in Schubert calculus, relied heavily on
formulating problems in a way that is efficient for computation. The computational complexity
of calculating a Gröbner basis in characteristic zero was a bottleneck, which we hope to overcome
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through the use of certifiable numerical methods. Algorithms from Smale’s α-theory may be
used to certify numerical output, when the problem involved is given by a square system of
polynomial equations. However, Schubert problems are famously overdetermined.

In Chapter V, we recast instances of Schubert problems as solution sets to square systems.
While this has the practical application of allowing us to use numerical methods in a pure
mathematical study of Schubert calculus, our ability to reformulate such a problem as a square
system is interesting by its own right. The duality between V and V ∗ induces a duality between
Schubert varieties in a Grassmannian and a dual Grassmannian, and we use this to give a primal-
dual formulation for an instance of a Schubert problem. This requires that we work in a larger
space, adding variables, but we benefit from replacing higher-degree determinantal equations by
bilinear equations. The square system of equations may be used to certify approximate solutions
obtained via an overdetermined system of determinantal equations, but if the bilinear equations
provide a more efficient setting for solving instances via numerical methods, then we may do
away with the overdetermined system altogether.
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Bases and Polynomial System Solving, Internat. J. Algebra Comput. 21 (2011), no. 5,
703–713.

[14] J. D. Hauenstein, N. Hein, C. Hillar, A. Mart́ın del Campo, F. Sottile, and Z. Teitler, The
Monotone Secant Conjecture in the Real Schubert Calculus, 2013, in preparation.

[15] J. D. Hauenstein, N. Hein, and F. Sottile, Certifiable Numerical Computations in Schubert
Calculus, 2013, in preparation.

[16] J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Regeneration Homotopies for Solving
Systems of Polynomials, Math. Comp. 80 (2011), no. 273, 345–377.

71



[17] J. D. Hauenstein and F. Sottile, Algorithm 921: alphaCertified: Certifying Solutions to
Polynomial Systems, ACM Trans. Math. Software 38 (2012), no. 4, Article No. 28.

[18] N. Hein, C. Hillar, and F. Sottile, Lower Bounds in Real Schubert Calculus, 2013, in prepa-
ration.

[19] N. Hein, F. Sottile, and I. Zelenko, A Congruence Modulo Four in the Real Schubert Cal-
culus, 2012, arXiV.org/1211.7160.
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