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CRITICAL POINTS OF DISCRETE PERIODIC OPERATORS

M. FAUST AND F. SOTTILE

Abstract. We study the spectra of operators on periodic graphs using methods from
combinatorial algebraic geometry. Our main result is a bound on the number of complex
critical points of the Bloch variety, together with an effective criterion for when this bound is
attained. We show that this criterion holds for Z2- and Z

3-periodic graphs with sufficiently
many edges and use our results to establish the spectral edges conjecture for some Z

2-
periodic graphs.

Introduction

The spectrum of a Zd-periodic self-adjoint discrete operator L consists of intervals in R.
Floquet theory reveals that the spectrum is the image of the coordinate projection to R

of the Bloch variety (also known as the dispersion relation), an algebraic hypersurface in
(S1)d × R. This coordinate projection defines a function λ on the Bloch variety, which is
our main object of study.
When the operator is discrete, the complexification of the Bloch variety is an algebraic

variety in (C×)d × C. Thus techniques from algebraic geometry and related areas may be
used to address some questions in spectral theory. In the 1990’s Gieseker, Knörrer, and
Trubowitz [16] used algebraic geometry to study the Schrödinger operator on the square
lattice Z2 with a periodic potential and established a number of results, including Floquet
isospectrality, the irreducibility of its Fermi varieties, and determined the density of states.
Recently there has been a surge of interest in using algebraic methods in spectral theory.
This includes investigating the irreducibility of Bloch and Fermi varieties [11, 12, 23, 25],
Fermi isospectrality [26], density of states [20], and extrema and critical points of the pro-
jection λ on Bloch varieties [1, 9, 25]. We use techniques from combinatorial algebraic
geometry and geometric combinatorics [31] to study critical points of the function λ on the
Bloch variety of a discrete periodic operator. We now discuss motivation and sketch our
results. Some background on spectral theory is sketched in Section 1, and Section 2.1 gives
some background from algebraic geometry.
An old and widely believed conjecture in mathematical physics concerns the structure of

the Bloch variety near the edges of the spectral bands. Namely, that for a sufficiently general
operator L (as defined in Section 1.1), the extrema of the band functions λj on the Bloch
variety are nondegenerate in that their Hessians are nondegenerate quadratic forms. This
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spectral edges nondegeneracy conjecture is stated in [22, Conj. 5.25], and it also appears
in [5, 21, 27, 28]. Important notions, such as effective mass in solid state physics, the
Liouville property, Green’s function asymptotics, Anderson localization, homogenization,
and many other assumed properties in physics, depend upon this conjecture.
The spectral edges conjecture states that for generic parameters, each extreme value is

attained by a single band, the extrema are isolated, and the extrema are nondegenerate. We
discuss progress for discrete operators on periodic graphs. In 2000, Klopp and Ralston [18]
proved that for Laplacians with generic potential each extreme value is attained by a single
band. In 2015, Filonov and Kachkovskiy [13] gave a class of two-dimensional operators
for which the extrema are isolated. They also show [13, Sect. 6] that the spectral edges
conjecture may fail for a Laplacian with general potential, which does not have generic
parameters in the sense of Section 1.1. Most recently, Liu [25] proved that the extrema are
isolated for the Schrödinger operator acting on the square lattice.
We consider a property which implies the spectral edges nondegeneracy conjecture: A

family of operators has the critical points property if for almost all operators in the family,
all critical points of the function λ (not just the extrema) are nondegenerate. Algebraic
geometry was used in [9] to prove the following dichotomy: For a given algebraic family
of discrete periodic operators, either the critical points property holds for that family, or
almost all operators in the family have Bloch varieties with degenerate critical points.
In [9], this dichotomy was used to establish the critical points property for the family

of Laplace-Beltrami difference operators on the Z2-periodic diatomic graph of Figure 1.
Bloch varieties for these operators were shown to have at most 32 critical points. A single
example was computed to have 32 nondegenerate critical points. Standard arguments from
algebraic geometry (see Section 5) implied that, for this family, the critical points property,
and therefore also the spectral edges nondegeneracy conjecture, holds.
We extend part of that argument to operators on many periodic graphs. Let L be a

discrete operator on a Zd-periodic graph Γ (see Section 1). Its (complexified) Bloch variety
is a hypersurface in the product (C×)d×C of a complex torus and the complex line defined
by a Laurent polynomial D(z, λ). The last coordinate λ, corresponding to projection onto
the spectral axis, is the function on the Bloch variety whose critical points we study. Ac-
cordingly, we will call critical points of the function λ on the Bloch variety “critical points
of the Bloch variety.” One contribution of this paper is to shift focus from spectral band
functions λj defined on a compact torus to a global function on the complex Bloch variety.
Another is to use the perspective of nonlinear optimization to address a question concerning
the spectrum of a discrete periodic operator.
We state our first result. Let Γ be a connected Zd-periodic graph (as in Section 1.1). Fix

a fundamental domain W for the Zd-action on the vertices of Γ. The support A(Γ) of Γ
records the local connectivity between translates of the fundamental domain. It is the set
of a ∈ Z

d such that Γ has an edge with endpoints in both W and a+W .

Theorem A. The function λ on the Bloch variety of a discrete operator on Γ has at most

d! |W |d+1vol(A(Γ))

isolated critical points. Here, vol(A(Γ)) is the Euclidean volume of the convex hull of A(Γ).
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This bound uses an outer approximation for the Newton polytope ofD(z, λ) (see Lemma 4.1)
and a study of the equations defining critical points of the function λ on the Bloch variety,
called the critical point equations (8). Corollary 2.5 is a strengthening of Theorem A. When
the bound is attained all critical points are isolated.

Example. We illustrate Theorem A on the example from [9, Sect. 4]. Figure 1 shows a
periodic graph Γ with d = 2 whose fundamental domain W has two vertices and its support

Figure 1. A dense periodic graph Γ with the convex hull of A(Γ).

A(Γ) consists of the columns of the matrix ( 0 1 0 −1 0
0 0 1 0 −1 ). Figure 1 also displays the convex

hull of A(Γ). As |W | = 2 and vol(A(Γ)) = 2, Theorem A implies that any Bloch variety for
an operator on Γ has at most

d! |W |d+1vol(A(Γ)) = 2! · 22+1 · 2 = 32

critical points, which is the bound demonstrated in [9]. ⋄

The bound of Corollary 2.5 arises as follows. There is a natural compactification of
(C×)d×C by a projective toric varietyX associated to the Newton polytope, P, ofD(z, λ) [15,
Ch. 5]. The critical point equations become linear equations on X whose number of solu-
tions is the degree of X. By Kushnirenko’s Theorem [19], this degree is the normalized
volume of P , (d+1)!vol(P ). This bound is attained exactly when there are no solutions at
infinity, which is the set ∂X := X r

(
(C×)d × C

)
of points added in the compactification.

The compactified Bloch variety is a hypersurface in X. A vertical face of P is one that
contains a segment parallel to the λ-axis. Corollary 3.9 shows that when P has no vertical
faces, any solution on ∂X to the critical point equations is a singular point of the intersection
of this hypersurface with ∂X. We state a simplified version of Corollary 3.9.

Theorem B. If P has no vertical faces, then the bound of Corollary 2.5 is attained exactly
when the compactified Bloch variety is smooth along ∂X.

We give a class of graphs whose typical Bloch variety is smooth at infinity and whose
Newton polytopes have no vertical faces. A periodic graph Γ is dense if it has every possible
edge, given its support A(Γ) and fundamental domain W (see Section 4). The following is
a consequence of Corollary 3.9 and Theorem 4.2.
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Theorem C. When d = 2 or 3 the Bloch variety of a generic operator on a dense periodic
graph is smooth along ∂X, its Newton polytope has no vertical faces, and the bound of
Theorem A is attained.

Theorem C is an example of a recent trend in applications of algebraic geometry in which
a highly structured optimization problem is shown to unexpectedly achieve a combinatorial
bound on the number of critical points. A first instance was [9], which inspired [4] and [24].
Section 1 presents background on the spectrum of an operator on a periodic graph, and

formulates our goal to bound the number of critical points of the function λ on the Bloch
variety. At the beginning of Section 3, we recast extrema of the spectral band functions using
the language of constrained optimization. Theorems A, B, and C are proven in Sections 2, 3,
and 4. In Section 5, we use these results to prove the spectral edges conjecture for operators
on three periodic graphs.

1. Operators on periodic graphs

Let d be a positive integer. We write C× := C r {0} for the multiplicative group of
nonzero complex numbers and T := {z ∈ C× | |z| = 1} for its maximal compact subgroup.
Note that if z ∈ T, then z = z−1. We write edges of a graph as pairs, (u, v) with u, v
vertices, and understand that (u, v) = (v, u).

1.1. Operators on periodic graphs. For more, see [2, Ch. 4]. A (Zd-)periodic graph is
a simple (no multiple edges or loops) connected undirected graph Γ with a free cocompact
action of Zd. Thus Zd acts freely on the vertices, V(Γ), and edges, E(Γ), of Γ preserving
incidences, and Zd has finitely many orbits on each of V(Γ) and E(Γ). Figure 2 shows two

Figure 2. Two Z2-periodic graphs.

Z2-periodic graphs. One is the honeycomb lattice and the other is an abelian cover of K4,
the complete graph on four vertices.
It is useful but not necessary to consider Γ immersed in Rd so that Zd acts on Γ via

translations. The graphs in Figure 2 are each immersed in R2, and for each we show two
independent vectors that generate the Z2-action.
Choose a fundamental domain for this Zd-action whose boundary does not contain a

vertex of Γ. In Figure 2, we have shaded the fundamental domains. Let W be the vertices
of Γ lying in the fundamental domain. Then W is a set of representatives of Zd-orbits of
V(Γ). Every Zd-orbit of edges contains one or two edges incident on vertices in W . An edge
incident on W has the form (u, a+v) for some u, v ∈ W and a ∈ Zd. (If a = 0, then u 6= v
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as Γ has no loops, and there are no restrictions when a 6= 0.) The support A(Γ) of Γ is the
set of a ∈ Zd such that (u, a+v) ∈ E(Γ) for some u, v ∈ W . This finite set depends on the
choice of fundamental domain and it is centrally symmetric in that A(Γ) = −A(Γ). As Γ
is connected, the Z-span of A(Γ) is Zd. For both graphs in Figure 2, this set consists of the
columns of the matrix ( 0 1 0 −1 0

0 0 1 0 −1 ).
A labeling of Γ is a pair of functions e : E(Γ) → R (edge weights) and V : V(Γ) → R

(potential) that is Zd-invariant (constant on orbits). The set of labelings is the finite-
dimensional vector space RE × RW , where E is the set of orbits on E(Γ). Given a labeling
c = (e, V ), we have the discrete operator Lc acting on functions f on V(Γ). Then Lc(f) is
defined by its value at u ∈ V(Γ),

Lc(f)(u) := V (u)f(u) +
∑

(u,v)∈E(Γ)

e(u,v)(f(u)− f(v)) .

We call Lc a discrete periodic operator on Γ, and may often omit the subscript c. It is a
bounded self-adjoint operator on the Hilbert space ℓ2(Γ) of square-summable functions on
V(Γ), and has real spectrum.

1.2. Floquet theory. As the action of Zd on Γ commutes with the operator L, we may
apply the Floquet transform, which reveals important structure of its spectrum. References
for this Floquet theory include [2, 21, 22].

The Floquet (Fourier) transform is a linear isometry ℓ2(Γ)
∼
−→ L2(Td,CW ), from ℓ2(Γ)

to square-integrable functions on Td, the compact torus, with values in the vector space
CW . The torus Td is the group of unitary characters of Zd. For z ∈ Td and a ∈ Zd, the
corresponding character value is the Laurent monomial

za := za11 za22 · · · zadd .

The Floquet transform f̂ of a function f on V(Γ) is a function on Td × V(Γ) such that for
z ∈ Td and u ∈ V(Γ),

(1) f̂(z, a+u) = zaf̂(z, u) for a ∈ Z
d .

Thus f̂ is determined by its values at the vertices W in the fundamental domain.
Let f̂ ∈ L2(Td,CW ). Then for u ∈ W , f̂(u) is a function on Td. The action of the

operator L on the Floquet transform f̂ is given by the formula

(2) L(f̂)(u) = V (u)f̂(u) +
∑

(u,a+v)∈E(Γ)

e(u,a+v)

(
f̂(u)− zaf̂(v)

)
,

as f̂(a+v) = zaf̂(v). The exponents a which appear lie in the support A(Γ) of Γ. The
simplicity of this expression is because L commutes with the Zd-action.
Thus in the standard basis for CW , the operator L becomes multiplication by a square ma-

trix whose rows and columns are indexed by elements of W . Writing δu,v for the Kronecker
delta function, the matrix entry in position (u, v) is the function

(3) δu,v

(
V (u) +

∑

(u,w)∈E(Γ)

e(u,w)

)
−

∑

(u,a+v)∈E(Γ)

e(u,a+v)z
a .
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Example 1.1. Let Γ be the hexagonal lattice from Figure 2. Figure 3 shows a labeling in
a neighborhood of its fundamental domain. Thus W = {u, v} consists of two vertices and

u u

u

vv

v

x

y

α

γ

γ

β β

Figure 3. A labeling of the hexagonal lattice.

there are three (orbits of) edges, with labels α, β, γ. Let (x, y) ∈ T2. The operator L is

L(f̂)(u) = V (u)f̂(u) + α(f̂(u)− f̂(v)) + β(f̂(u)− x−1f̂(v)) + γ(f̂(u)− y−1f̂(v)) ,

L(f̂)(v) = V (v)f̂(v) + α(f̂(v)− f̂(u)) + β(f̂(v)− xf̂(u)) + γ(f̂(v)− yf̂(u)) .

Collecting coefficients of f̂(u), f̂(v), we represent L by the 2× 2-matrix,

(4) L =

(
V (u) + α + β + γ −α− βx−1 − γy−1

−α− βx− γy V (v) + α + β + γ

)
,

whose entries are Laurent polynomials in x, y. Notice that the support A(Γ) of Γ equals the
set of exponents of monomials which appear in L. Observe that for (x, y) ∈ T2, LT = L, so
that L is Hermitian, showing again that the operator L is self-adjoint. ⋄

What we saw in Example 1.1 holds in general. In the standard basis for CW , L = Lc

is multiplication by a |W | × |W |-matrix L(z) = Lc(z) with each entry (3) a finite sum of
monomials with exponents from A(Γ) (a Laurent polynomial with support A(Γ)). Note
that (u, a+v) ∈ E(Γ) if and only if (−a+u, v) ∈ E(Γ), these edges have the same label, and

for z ∈ Td, za = z−a. Thus for z ∈ Td, the matrix is Hermitian, as L(z)T = L(z−1) = L(z).

1.3. Critical points of the Bloch variety. As L(z) is Hermitian for z ∈ Td, its spectrum
is real and consists of its |W | eigenvalues

(5) λ1(z) ≤ λ2(z) ≤ · · · ≤ λ|W |(z) .

These eigenvalues vary continuously with z ∈ Td, and λj(z) is called the jth spectral band
function, λj : T

d → R. Its image is an interval in R, called the jth spectral band. The
eigenvalues (5) are the roots of the characteristic polynomial

(6) D(z, λ) = Dc(z, λ) := det(Lc(z) − λI) ,

which we call the dispersion function. Its vanishing defines a hypersurface

(7) Var(Dc(z, λ)) = {(z, λ) ∈ T
d × R | D(z, λ) = 0} ,
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called the Bloch variety of the operator L1. The Bloch variety is the union of |W | branches
with the jth branch equal to the graph of the jth spectral band function. The image of
the Bloch variety under the projection to R is the spectrum σ(L) of the operator L. This
projection is a function λ on the Bloch variety. Identifying the jth branch/graph with T

d,
the restriction of λ to that branch gives the corresponding spectral band function λj.
Figure 4 shows this for the operator L on the hexagonal lattice with edge weights 6, 3, 2

and zero potential V—for this we unfurl T2, representing it by [−π
2
, 3π

2
]2 ⊂ R2, which is a

fundamental domain in its universal cover. (That is, by quasimomenta in [−π
2
, 3π

2
]2.) It has

x

y

R

T2

σ(L)PPPPPP
PPPPPP

PPPPPP
PPPPPP
PPPPPP qqqs

✏✏✏✏✏✏✶

PPPPPPq

Figure 4. A Bloch variety and spectral bands for the hexagonal lattice.

two branches with each the graph of the corresponding spectral band function. An endpoint
of a spectral band (spectral edge) is the image of an extremum of some band function λj(z).
For the hexagonal lattice at these parameters, each band function has two nondegenerate
extrema, and these give the four spectral edges. These are also local extrema of the function
λ on the Bloch variety.
The spectral edges conjecture [22, Conj. 5.25] for a periodic graph Γ asserts that for

generic values of the parameters (e, V ), each spectral edge is attained by a single band,
the extrema on the Bloch variety are isolated, and all extrema are nondegenerate (the
spectral band function λj has a full rank Hessian matrix). Here, generic means that there
is a nonconstant polynomial p(e, V ) in the parameters such that when p(e, V ) 6= 0, these
desired properties hold.
The entries in the matrix L(z) and the function (6) defining the Bloch variety are all

(Laurent) polynomials. In this setting it is natural to allow complex parameters, e : E(Γ) →
C, V : V(Γ) → C and variables z ∈ (C×)d, λ ∈ C. With complex parameters and variables,
Lc(z) is no longer Hermitian, but it does satisfy Lc(z)

T = Lc(z
−1) and the Bloch variety is

the complex algebraic hypersurface Var(Dc(z, λ)) in (C×)d ×C defined by the vanishing of
the dispersion function Dc(z, λ) of Lc(z) (6).
In passing to the complex Bloch variety we may no longer distinguish branches λj(z) of

λ. At a smooth point (z0, λ0) whose projection z to (C×)d is regular (in that ∂D
∂λ

(z0, λ0) 6=
0), there is a locally defined function f of z with λ0 = f(z0) and D(z, f(z)) = 0 on its

1This is also called the dispersion relation in the literature. We use the term Bloch variety as it is an
algebraic variety and our perspective is to use methods from algebraic geometry in spectral theory.
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domain, but this is not necessarily a global function of z. Consequently, we will consider
the projection to the last coordinate to be a function λ on the Bloch variety, and then study
its differential geometry, including its critical points.
Nondegeneracy of spectral edges is implied by the stronger condition that all critical

points of the function λ on the complex Bloch variety are nondegenerate. Understanding
the critical points of λ is a first step. Our aim is to bound the number of (isolated) critical
points of λ on the Bloch variety of a given operator L, give criteria for when the bound is
attained, prove that it is attained for generic operators on a class of graphs, and finally to
use these results to prove the spectral edges conjecture for 219 + 2 graphs. We treat these
in the following four sections.

2. Bounding the number of critical points

We first recast extrema of spectral band functions in terms of constrained optimization.
The complex Bloch variety is the hypersurface Var(D(z, λ)) in (C×)d × C defined by the
vanishing of the dispersion function D(z, λ). Critical points of the function λ on the Bloch
variety are points of the Bloch variety where the gradients in (C×)d×C of λ and D(z, λ) are
linearly dependent. That is, a critical point is a point (z, λ) ∈ (C×)d × C with D(z, λ) = 0
such that either the gradient ∇D(z, λ) vanishes or we have ∂D

∂zi
(z, λ) = 0 for i = 1, . . . , d

and ∂D
∂λ

(z, λ) 6= 0 (as ∇λ = (0, . . . , 0, 1)). In either case, we have

D(z, λ) = 0 and
∂D

∂zi
= 0 for i = 1, . . . , d .

Since zi 6= 0, we obtain the equivalent system

(8) D(z, λ) = z1
∂D

∂z1
= · · · = zd

∂D

∂zd
= 0 ,

which we call the critical point equations.

Proposition 2.1. A point (z, λ) ∈ (C×)d × C is a critical point of the function λ on the
Bloch variety Var(D(z, λ)) if and only if (8) holds.

Proof. We already showed that at a critical point of λ, the equations (8) hold. Suppose
now that (z, λ) ∈ (C×)d × C is a solution to (8). As D(z, λ) = 0, the point lies on the
Bloch variety. As z ∈ (C×)d, no coordinate zi vanishes, which implies that ∂D

∂zi
(z, λ) = 0 for

i = 1, . . . , d. Thus the gradients ∇λ and ∇D are linearly dependent at (z, λ), showing that
it is a critical point. ¤

Remark 2.2. A point (z0, λ0) ∈ Td × R such that λ0 = λj(z0) is an extreme value of the
spectral band function λj is also a critical point of the Bloch variety. Indeed, either the
gradient ∇D vanishes at (z0, λ0) or it does not vanish. If ∇D(z0, λ0) = 0, then (z0, λ0) is
a critical point. If ∇D(z0, λ0) 6= 0, then the Bloch variety is smooth at (z0, λ0) and thus is
a smooth point of the graph of λj. As λ0 = λj(z0) is an extreme value of λj, the tangent
plane is horizontal at (z0, λ0). This implies that λj is differentiable (by the implicit function

theorem) and that
∂λj

∂zi
(z0, λ0) = 0 for i = 1, . . . , d. Thus the gradients of λ and D at (z0, λ0)

are linearly dependent, showing that it is a critical point. ⋄
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Bézout’s Theorem [29, Sect. 4.2.1] gives an upper bound on the number of isolated critical
points: We may multiply each Laurent polynomial in (8) by a monomial to clear denomi-
nators and obtain ordinary polynomials. The product of their degrees is an upper bound
for the number of the common zeroes that are isolated in the complex domain. Polyhedral
bounds that exploit the structure of the Laurent polynomials are typically much smaller.
Sources for these are [6, Ch. 7], [15, Ch. 5], and [30, Ch. 3]. These results bound the num-
ber of isolated common zeroes, counted with multiplicities. An isolated common zero z0
of polynomials f1, . . . , fd+1 on (C×)d × C has multiplicity 1 exactly when the gradient of
f1, . . . , fd+1 spans the cotangent space at z0; otherwise its multiplicity exceeds 1 (see [6, Ch.
4 Def. 2.1] and [7, Ch. 8.7 Def. 8]).
Let C[z±, λ] be the ring of Laurent polynomials in z1, . . . , zd, λ where λ occurs with only

nonnegative exponents. Note that D(z, λ) ∈ C[z±, λ]. The support A(ψ) ⊂ Zd × N of a
polynomial ψ ∈ C[z±, λ] is the set of exponents of monomials in ψ. The Newton polytope
N (ψ) := conv(A(ψ)) of ψ is the convex hull of its support. Write vol(N (ψ)) for the (d+1)-
dimensional Euclidean volume of the Newton polytope of ψ.

Example 2.3. We continue the example of the hexagonal lattice. Writing ℓ for α+β+γ−λ,
the dispersion function D(x, y;λ) of the matrix (4) is

(V (u) + ℓ)(V (v) + ℓ) − (−α− βx−1 − γy−1)(−α− βx− γy) .

In Figure 5 the monomials in D(x, y;λ) label the columns of a 3× 9 array which are their
exponent vectors. Figure 5 also shows its Newton polytope, which has volume 2. ⋄

x xy−1 y−1 x−1 x−1y y 1 λ λ2

1 1 0 −1 −1 0 0 0 0
0 −1 −1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 2

λ2

x

xy−1y−1

x−1 y

Figure 5. Support and Newton polytope of the hexagonal lattice operator.

Theorem 2.4. For a polynomial ψ ∈ C[z±, λ], the critical point equations for ψ

(9) ψ(z, λ) = z1
∂ψ

∂z1
= · · · = zd

∂ψ

∂zd
= 0

have at most (d+1)!vol(N (ψ)) isolated solutions in (C×)d × C, counted with multiplicity.
When the bound is attained, all solutions are isolated.

We prove this at the end of the section.
As the Bloch variety is defined by the dispersion function D(z, λ) = det(L(z) − λI), we

deduce the following from Theorem 2.4.

Corollary 2.5. The number of isolated critical points of the function λ on the Bloch variety
for an operator L on a discrete periodic graph is at most (d+1)!vol(N (D)).
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Theorem A follows from this and Lemma 4.1, which asserts that

N (D) ⊂ |W |(conv(A(Γ) ∪ {e}) ,

where e = (0, . . . , 0, 1). This containment implies the inequality

(d+1)!vol(N (D)) ≤ (d+1)!|W |d+1vol(conv(A(Γ) ∪ {e})) = d! |W |d+1vol(A(Γ)) .

We prove Theorem 2.4 and Corollary 2.5 after developing some preliminary results.

2.1. A little algebraic geometry. For more from algebraic geometry, see [7, 29]. An
(affine) variety is the set of common zeroes of some polynomials f1, . . . , fr ∈ C[x1, . . . , xn],

Var(f1, . . . , fr) := {x ∈ C
n | f1(x) = · · · = fr(x) = 0} .

We also call this the set of solutions to the system f1 = · · · = fr = 0. We may replace any
factor C in Cn by C×, and then allow the corresponding variable to have negative exponents.
The complement of a variety X is a (Zariski) open set. This defines the Zariski topology
in which varieties are the closed sets. A variety is irreducible if it is not the union of two
proper subvarieties. For an irreducible variety, any nonempty open set is dense (even in the
classical topology) and any nonempty classically open set is dense in the Zariski topology.
Maps f : X → Y ⊂ Cm of varieties are given by m polynomials on X and the image f(X)
contains an open subset of its closure.
Suppose that X = Var(f1, . . . , fr). The smooth (nonsingular) locus of X is the open

subset of points of X where the Jacobian of f1 . . . , fr has maximal rank on X. Let f be a
single polynomial. A point x is a smooth point on the hypersurface Var(f) defined by f if
f(x) = 0, so that x ∈ Var(f) and if the gradient ∇f(x) = ( ∂f

∂x1

(x), . . . , ∂f

∂xn
(x)) is nonzero, so

that some partial derivative of f does not vanish at x. The point x ∈ Var(f) is singular if all
partial derivatives of f vanish at x. The kernel of the Jacobian at x ∈ X = Var(f1, . . . , fr)
is the (Zariski) tangent space at x. The dimension of an irreducible variety is the dimension
of a tangent space at any smooth point. An isolated point x of X has multiplicity one
exactly when it is nonsingular.

Remark 2.6. Our definition of smooth and singular points of a variety depends upon its
defining polynomials. For example, the variety defined by (z−λ)2 is singular at every point.
This scheme-theoretic notion of singularity is essential to our arguments in Sections 3 and 4,
and is standard in algebraic geometry. ⋄

If X is irreducible, then any proper subvariety has smaller dimension. If f : X → Y is a
map of varieties with f(X) dense in Y , then there is an open subset U of Y such that if
y ∈ U , then dim f−1(y)+dimY = dimX. We also have Bertini’s Theorem: if X is smooth,
then U may be chosen so that for every y ∈ U , f−1(y) is smooth.
Projective space P(Cn) is the set of one-dimensional linear subspaces (lines) of Cn and

is compact. It has dimension n−1 and subvarieties are given by homogeneous polynomials.
The set U0 of lines spanned by vectors whose initial coordinate is nonzero is isomorphic to
Cn−1 under v 7→ span(1, v) and P(Cn) is a compactification of U0 ≃ Cn−1.
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2.2. Polyhedral bounds. The expression (d+1)!vol(N (ψ)) of Theorem 2.4 is the normal-
ized volume of N (ψ). This is Kushnirenko’s bound [15, Ch. 6, Thm. 2.2] for the number
of isolated solutions in (C×)d+1 to a system of d+1 polynomial equations, all with Newton
polytope N (ψ). To prove Theorem 2.4, we first explain why Kushnirenko’s bound applies
to the system (9), and then why it bounds the number of isolated solutions on the larger
space (C×)d × C.
For a monomial zaλj in C[z±, λ], a ∈ Zd and j ∈ N. For each i = 1, . . . , d, this monomial

is an eigenvector for the operator zi
∂
∂zi

with eigenvalue ai. Thus A(zi
∂
∂zi

ψ) ⊂ A(ψ), giving

the inclusion N (zi
∂
∂zi

ψ) ⊂ N (ψ). A refined version of Kushnirenko’s Theorem in which

the polynomials may have different Newton polytopes is Bernstein’s theorem [6, Sect. 7.5],
which is in terms of a quantity called mixed volume, whose properties are developed in [10,
Ch. IV]. The mixed volume of polytopes is monotone under inclusion of polytopes and it
equals the normalized volume when all polytopes coincide. It follows that the theorems of
Bernstein and Kushnirenko together give the bound of (d+1)!vol(N (ψ)) for the number of
isolated solutions to the system (9) in (C×)d+1. To extend this to solutions in the larger
space (C×)d × C, we develop some theory of projective toric varieties.

2.3. Projective toric varieties. For Kushnirenko’s Theorem and our extension, we re-
place the nonlinear equations (9) on (C×)d × C by linear equations on a projective variety.
We follow the discussion of [30, Ch. 3]. Let f ∈ C[z±, λ] be a polynomial with support
A = A(f). To simplify the presentation, we will at times assume that the origin 0 lies in
A. The results hold without this assumption, as explained in [30, Ch. 3].
Writing CA for the vector space with basis indexed by elements of A, consider the map

ϕA : (C×)d × C −→ C
A

(z, λ) 7−→ (zaλj | (a, j) ∈ A) .

This map linearizes nonlinear polynomials. Indeed, write f as a sum of monomials,

f =
∑

(a,j)∈A

c(a,j)z
aλj .

If {x(a,j) | (a, j) ∈ A} are variables (coordinate functions) on CA, then

(10) Λf :=
∑

(a,j)∈A

c(a,j)x(a,j)

is a linear form on CA, and we have f(z, λ) = Λf (ϕA(z, λ)) =: ϕ∗
A(Λf ).

Since 0 ∈ A, the corresponding coordinate x0 of ϕA is 1 and so the image of ϕA lies in
the principal affine open subset U0 of the projective space PA := P(CA) = P|A|−1. This is
the subset of PA where x0 6= 0 and it is isomorphic to the affine space C|A|−1. We define XA

to be the closure of the image ϕA((C
×)d+1) in the projective space PA, which is a projective

toric variety. Because the map ϕA is continuous on (C×)d×C, XA is also the closure of the
image ϕA((C

×)d × C).
The map ϕA is not necessarily injective; we describe its fibers. Let ZA ⊂ Zd+1 be

sublattice generated by all differences α−β for α, β ∈ A. When 0 ∈ A this is the sublattice
generated by A, and it has full rank d + 1 if and only if conv(A) has full dimension d + 1.
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Let GA be Hom(Zd+1/ZA,C×) ⊂ (C×)d+1, which acts on (C×)d × C. The fibers of ϕA

are exactly the orbits of GA on (C×)d × C. If conv(A) does not have full dimension, then
GA has positive dimension as do all fibers of ϕA, otherwise GA is a finite group and ϕA

has finite fibers. On the torus (C×)d+1, GA acts freely and ϕA((C
×)d+1) is identified with

(C×)d+1/GA. To describe the fibers of ϕA on (C×)d × {0} = ((C×)d × C) r (C×)d+1, note
that (C×)d+1 acts on this through the homomorphism π that sends its last (λ) coordinate
to {1}. Thus the fibers of ϕA on (C×)d × {0} are exactly the orbits of π(GA) ⊂ (C×)d.

Proposition 2.7. The dimension of XA is the dimension of conv(A). The fibers of ϕA on
(C×)d+1 are the orbits of GA and its fibers on (C×)d × {0} are the orbits of π(GA).

We return to the situation of Theorem 2.4. Let ψ ∈ C[z±, λ] be a polynomial with support
A. As each polynomial in (9) has support a subset of A, each corresponds to a linear form
on PA as in (10). The corresponding system of linear forms defines a linear subspace Mψ of
PA. We have the following proposition (a version of [30, Lemma 3.5]).

Proposition 2.8. The solutions to (9) are the inverse images under ϕA of points in the
linear section ϕA((C

×)d × C) ∩ Mψ. When ϕA is an injection, it is a bijection between
solutions to (9) on (C×)d × C and points in ϕA((C

×)d × C) ∩Mψ.

Proof of Theorem 2.4. When vol(N (ψ)) = 0, so that N (ψ) does not have full dimension
d + 1, then each fiber of ϕA is positive-dimensional and so by Proposition 2.8 there are no
isolated solutions to (9).
Suppose that vol(N (ψ)) > 0. Then every fiber of ϕA is an orbit of the finite group GA.

Over points of ϕA((C
×)d+1), each fiber consists of |GA| points and over ϕA((C

×)d×{0} each
fiber consists of |π(GA)| ≤ |GA| points. As XA is the closure of ϕA((C

×)d×C), the number
of isolated points in XA∩Mψ is at least the number of isolated points in ϕA((C

×)d×C)∩Mψ,
both counted with multiplicity. The degree of the projective variety XA is an upper bound
for the number of isolated points in XA ∩Mψ, which is explained in [30, Ch. 3.3]. There,
the product of |GA| and the degree of XA is shown to be (d+1)!vol(N (ψ)), the normalized
volume of the Newton polytope of ψ. This gives the bound of Theorem 2.4. That all
points are isolated when the bound of the degree is attained is Proposition 3.2 in the next
section. ¤

3. Proof of Theorem B

We give conditions for when the upper bound of Corollary 2.5 is attained. By Proposi-
tion 2.1, the critical points of the function λ on the Bloch variety Var(D) are the solutions
in (C×)d × C to the critical point equations (8). Let A = A(D) be the support of the
polynomial D. The critical points are ϕ−1

A (XA ∩ MD), where XA ⊂ PA is the closure of
ϕA((C

×)d × C) and MD is the subspace of PA defined by linear forms corresponding (as
in (10)) to the polynomials in (8). For the bound of Theorem 2.4 and Corollary 2.5, note
that the number of isolated points of XA ∩MD is at most the product of the degree of XA

with the cardinality of a fiber of ϕA, which is (d+1)!vol(N (D)). We establish Theorem B
concerning the sharpness of this bound by characterizing when the inequality of Theorem 2.4
is strict and then interpreting that for the critical point equations.
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Remark 3.1. Let X ⊂ Pn be a variety of dimension d and M ⊂ Pn a linear subspace of
codimension d. The number of points in X∩M does not depend on M when the intersection
is transverse; it is the degree of X [29, p. 234]. When the intersection is not transverse,
intersection theory gives a refinement [14, Ch. 6]. For each irreducible component Z of the
intersection X ∩M , there is a positive integer—the intersection multiplicity along Z–such
that the sum of these multiplicities is the degree of X. When Z is positive-dimensional this
number is the degree of a zero-cycle constructed on Z (it is at least the degree of Z) and
when Z is zero-dimensional (a point), it is the local multiplicity [29, Ch. 4]. ⋄

A consequence of Remark 3.1 is the following.

Proposition 3.2. Let X,M be as in Remark 3.1. The number (counted with multiplicity)
of isolated points of X∩M is strictly less than the degree of X if and only if the intersection
has a positive-dimensional component.

Write X◦
A := ϕA((C

×)d×C) for the image of ϕA and ∂XA := XArX◦
A, the points of XA

added to X◦
A when taking the closure. This is the boundary of XA. In the Introduction,

points of ∂XA were referred to as ‘lying at infinity’.

Corollary 3.3. For a polynomial ψ ∈ C[z±, λ], the inequality of Theorem 2.4 is strict if
and only if ∂XA ∩Mψ 6= ∅.

Proof. The inequality of Theorem 2.4 is strict if either of the following hold.

(1) XA ∩Mψ has an isolated point not lying in X◦
A.

(2) XA ∩Mψ contains a positive-dimensional component Z.

In (1), XA ∩Mψ has isolated points in ∂XA ∩Mψ, so the intersection is nonempty. In (2),
Z is a projective variety of dimension at least one. The set X◦

A is an affine variety, and we
cannot have Z ⊂ X◦

A as the only projective varieties that are also subvarieties of an affine
variety are points. Thus Z ∩ ∂XA 6= ∅, which completes the proof. ¤

3.1. Facial systems. We return to the general case of a toric variety. Let A ⊂ Zn be
a finite set of points with corresponding projective toric variety XA ⊂ PA. We have the
following description of the points of its boundary, XA r ϕA((C

×)n).
Let P := conv(A), the convex hull of A. The dot product with a nonzero vector w ∈ Rn,

a 7→ w ·a, defines a linear function on Rn. For w ∈ Rn, set h(w) := min{w ·a | a ∈ P}. The
set F = {p ∈ P | w · p = h(w)} of minimizers is the face of P exposed by w. We have that
F = conv(F ∩ A), and may write F for F ∩ A. As A ⊂ Zn, we only need integer vectors
w ∈ Zn to expose all faces of P . If dimF = dimP − 1, then F is a facet.
For each face F of P , there is a corresponding coordinate subspace PF of PA—this is the

set of points z = [za | a ∈ A] ∈ PA such that a 6∈ F implies that za = 0. The image of the
map ϕF : (C×)n → PF ⊂ PA has closure the toric variety XF . Its dimension is equal to the
dimension of the face F . Write X◦

F for the image of ϕF . This description and the following
proposition is essentially [15, Prop. 5.1.9].

Proposition 3.4. The boundary of the toric variety XA is the disjoint union of the sets
X◦

F for all the proper faces F of conv(A).
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Let f =
∑

a∈A cax
a be a polynomial with support A. We observed that if Λ is the

corresponding linear form (10) on P
A, then the variety Var(f) ⊂ (C×)n of f is the pullback

along ϕA of X◦
A ∩ M , where M := Var(Λ) is the hyperplane defined by Λ. Let F be a

proper face of P . Then X◦
F ∩M pulls back along ϕF to the variety of

ϕ−1
F (Λ) =

∑

a∈F

cax
a

in (C×)n. This sum of the terms of f whose exponents lie in F is a facial form of f and
is written f |F . Given a system Φ: f1 = · · · = fn = 0 involving Laurent polynomials with
support A, the system f1|F = · · · = fn|F = 0 of their facial forms is the facial system Φ|F
of Φ.

Corollary 3.5. Let M be the intersection of the hyperplanes given by the polynomials in a
system Φ of Laurent polynomials with support A. For each face F of conv(A), the points of
X◦

F ∩M pull back under ϕF to the solutions of the facial system Φ|F .
If no facial system Φ|F has a solution, then the number of solutions to Φ = 0 on (C×)n

is n!vol(conv(A)).

Proof. The first statement follows from the observation about a single polynomial f and
its facial form f |F , and the second is a consequence of a version of Corollary 3.3 for XA r

ϕA((C
×)n). ¤

The second statement is essentially [3, Thm. B] and is also explained in [30, Sect. 3.4].

3.2. Facial systems of the critical point equations. We prove Theorem B from the
Introduction by interpreting the facial systems of the critical point equations. It is useful
to introduce the following notion. A polynomial f(x) in x ∈ (C×)n is quasi-homogeneous
with quasi-homogeneity w ∈ Zn if there is a number 0 6= wf such that

a ∈ A(f) =⇒ w · a = wf .

Equivalently, f is quasi-homogeneous if its support A(f) lies on a hyperplane not containing
the origin. The quasi-homogeneities of f are those w ∈ Zn whose dot product is constant
on A(f). For t ∈ C

× and w ∈ Z
n, let tw := (tw1 , . . . , twn) ∈ (C×)n.

Lemma 3.6. Suppose that f has a quasi-homogeneity w ∈ Zn. Then

(1) For t ∈ C× and x ∈ (C×)n, we have f(tw · x) = twff(x).
(2) We have

wf f =
n∑

i=1

wi xi

∂f

∂xi

.

Proof. Note that for a ∈ Zn, (tw · x)a = tw·axa. The first statement follows. For the second,
note that aix

a = xi
∂
∂xi

xa. ¤

Let ψ ∈ C[z±, λ] have support A ⊂ Zd ×N and Newton polytope P := conv(A). We will
assume that P has dimension d+1, and also that A ∩ Zd × {0} is a facet of A, called its
base. Let (9) be the critical point equations for λ on ψ and Mψ ⊂ PA the corresponding
linear subspace of codimension d+1.
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Let 0 := 0d in Zd and e := (0, 1). The base of A is exposed by e and it is the support
of ψ(z, 0). A main difference between the sparse equations of Section 3.1 and the critical
point equations (8) is that the critical point equations allow solutions with λ = 0, which is
the component of the boundary of the toric variety corresponding to the base of A. A face
F of P is vertical if it contains a vertical line segment, one parallel to e.

Lemma 3.7. Suppose that F is a proper face of P that is not the base of P and is not
vertical. Then the corresponding facial system of the critical point equations has a solution
if and only if the hypersurface Var(ψ|F ) defined by ψ|F in (C×)d+1 is singular.

Proof. Let 0 6= w ∈ Zd+1 be an integer vector that exposes the face F . As F is not vertical we
may assume that wd+1 is nonzero. As F is not the base, it lies on an affine hyperplane that
does not contain the origin, so that ψ|F is quasi-homogeneous with some quasi-homogeneity
w. Write wF for the constant w · a for a ∈ F . By Lemma 3.6 (2), we have

(11) wF ψ|F =
d∑

i=1

wi zi
∂ψ|F
∂zi

+ wd+1 λ
∂ψ|F
∂λ

.

Suppose now that (z, λ) is a solution of the restriction of the critical point equations to the
face F . That is, at (z, λ),

ψ|F =

(
z1

∂ψ

∂z1

)∣∣∣∣
F

= · · · =

(
zd

∂ψ

∂zd

)∣∣∣∣
F

= 0 .

Observe that (zi
∂ψ

∂zi
)|F = zi

∂ψ|F
∂zi

(and the same for λ). Since wd+1 6= 0, these equations

and (11) together imply that (λ∂ψ

∂λ
)|F = 0, which implies that (z, λ) is a singular point of

the hypersurface Var(ψ|F ) defined by ψ|F . ¤

We deduce the following theorem.

Theorem 3.8. If the Newton polytope N (ψ) of ψ has no vertical faces and the restriction
of ψ to each face that is not the base of N (ψ) defines a smooth variety, then the critical
point equations have exactly (d+1)!vol(N (A)) solutions in (C×)d × C.

We apply this when ψ is the dispersion function D(z, λ). Recall that the boundary of the
variety XA (XD) corresponds to all proper faces of its Newton polytope N (D), except for
its base. We deduce the following precise version of Theorem B.

Corollary 3.9. Let L be an operator on a periodic graph and set D = det(L(z) − λI). If
N (D) has no vertical faces and if for each face F that is not its base, Var(D|F ) is smooth,
then the Bloch variety has exactly (d+1)!vol(conv(A(D))) critical points.
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Example 3.10. The restriction on vertical faces is necessary. General operators on the second
graph in Figure 2 (an abelian cover of K4) have the following Newton polytope:

It has base [−1, 1]2, apex (0, 0, 4), and the remaining vertices are at (±1, 0, 1) and (0,±1, 1).
It has volume 20/3, so we expect 40 = 3! · 20/3 critical points. However, there are at most
32 critical points, as direct computation shows that the critical point equations have two
solutions on each of its four vertical faces. ⋄

4. Newton polytopes and dense periodic graphs

The Newton polytope N (D) of the dispersion function of an operator on a periodic graph
is central to our results. In Section 4.1 we associate a polytope N (Γ) to any periodic graph
Γ such that N (D) ⊂ N (Γ) for any operator on Γ, and that we have equality for almost all
parameter values. We call N (Γ) the Newton polytope of Γ.
A periodic graph Γ is dense if it has every possible edge, given its support A(Γ) and

fundamental domain W . Every periodic graph is a subgraph of a minimal dense periodic
graph. We identify the Newton polytope of a dense periodic graph and show that when
d = 2 or 3, a general operator on Γ satisfies Corollary 3.9, which implies Theorem C.
Let Γ be a connected Z

d-periodic graph with fundamental domain W . Its support A(Γ) is
the finite set of points a ∈ Zd such that there is an edge between W and a+W . The integer
span of A(Γ) is Zd, as Γ is connected. The graph Γ is dense if for every a ∈ A(Γ), there
is an edge in Γ between every pair of vertices in the union of W and a+W . In particular,
the restriction of Γ to W is the complete graph on W . The graphs of Figures 1 and 6 are
dense, while those of Figure 2 are not dense.

Figure 6. A dense graph Γ and its support A(Γ) with convex hull.
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The set of parameters (e, V ) for operators on a periodic graph Γ is Y = CE ×CW , where
E is the set of orbits of edges. We observed that for any c ∈ Y , each entry of Lc(z) has
support a subset of A(Γ). Consequently, each diagonal entry of Lc(z) − λI has support a
subset of A(Γ) ∪ {e} and its Newton polytope is a subpolytope of Q := conv(A(Γ) ∪ {e}).
Let m := |W |, the number of orbits of vertices.

Lemma 4.1. The Newton polytope N (Dc) is a subpolytope of the dilation mQ of Q.

Proof. The dispersion function Dc is a sum of products of m entries of the m ×m matrix
Lc(z)− λI. Each such product has Newton polytope a subpolytope of mQ as the Newton
polytope of a product is the sum of Newton polytopes of the factors. ¤

Figure 7 shows mQ = 2Q for the dense graphs of Figures 1 and 6. Observe that mQ is a

Figure 7. Newton polytopes of dense graphs.

pyramid with base m conv(A(Γ)) and apex me, and it has no vertical faces.

Theorem 4.2. Let Γ be a dense Zd-periodic graph. There is a nonempty Zariski open
subset U of the parameter space Y such that for c ∈ U , the Newton polytope of Dc(z, λ) is
the pyramid mQ. When d = 2 or 3, then we may choose U so that for every c ∈ U and face
F of mQ that is not its base, Var(Dc|F ) is smooth.

Together with Corollary 3.9, this implies Theorem C from the Introduction. We prove
Theorem 4.2 in the following two subsections.

4.1. The Newton polytope of Γ. For a periodic graph Γ, the space of parameters (e, V )
for operators on Γ is Y = CE × CW . Treating parameters as indeterminates gives the
generic dispersion function D(e, V, z, λ), which is a polynomial in z, λ whose coefficients are
polynomials in the parameters e, V . The Newton polytope N (Γ) of Γ is the convex hull of
the monomials in z, λ that appear in D(e, V, z, λ).

Lemma 4.3. For c ∈ Y , N (Dc(z, λ)) is a subpolytope of N (Γ). The set of c ∈ Y such
that N (Dc(z, λ)) = N (Γ) is a dense open subset U . When Γ is a dense periodic graph,
N (Γ) = mQ.

Proof. For any c = (e, V ) ∈ Y , Dc(z, λ) is the evaluation of the generic dispersion function
D(e, V, z, λ) at the point (e, V ). Thus N (Dc) ⊂ N (Γ).
The coefficient C(a,j) of a monomial zaλj in D(e, V, z, λ) is a polynomial in (e, V ). For

any c = (e, V ) ∈ Y , zaλj appears in Dc if any only if C(a,j)(e, V ) 6= 0. Thus, we have the



18 M. FAUST AND F. SOTTILE

equality N (Dc) = N (Γ) of Newton polytopes if and only if C(a,j)(e, V ) 6= 0 for every vertex
(a, j) of N (Γ), which defines a dense open subset U ⊂ Y .
When Γ is dense and no parameter c vanishes, then every diagonal entry of Lc(z) − λI

has support A(Γ) ∪ {e}. This implies that N (Γ) = mQ. ¤

4.2. Smoothness of the Bloch variety at infinity. Let Γ be a dense periodic graph
with d = 2 or 3. Let U ⊂ Y be the subset of Lemma 4.3. We show that for each face F of
N (Γ) that is not its base, there is a nonempty open subset UF of U such that for c ∈ UF , the
restriction Dc|F to the monomials in F defines a smooth hypersurface. Then for parameters
c in the intersection of the UF , the operator satisfies the hypotheses of Corollary 3.9, which
proves Theorem 4.2 and Theorem C.
Let F be a face of N (Γ) that is not its base and let c ∈ U . We may assume that F is not

a vertex, for then Dc|F is a single term and Var(Dc|F ) = ∅. Since N (Γ) = mQ, there is a
unique face G of Q such that F = mG. We have that

Dc(z, λ)|F = det
(
(Lc(z)− λI)|G

)
,

where each entry of the matrix (Lc(z) − λI)|G is the facial form f |G of the corresponding
entry f of Lc(z)− λI.
Since G is not the base of Q (and thus does not contain the origin), we make the following

observation, which follows from the form of the operator Lc (2). If the apex e = (0, 1) of
Q lies in G and f is a diagonal entry of (Lc(z)− λI)|G, then f contains the term −λ. Any
other integer point a ∈ G is nonzero and lies in the support A(Γ) of Γ, and the coefficient
of za in f is −e(u,a+v), where f is the entry in row u and column v. Consequently, except
possibly for terms −λ, all coefficients of entries in (Lc(z)− λI)|G are distinct parameters.
Suppose that the fundamental domain is W = {v1, . . . , vm} so that we may index the

rows and columns of Lc(z) by 1, . . . ,m. Let Y ′ ⊂ Y be the set of parameters c where

e(vi,a+vj) = 0 if a ∈ G and j 6= i, i+1.

(Here, m+1 is interpreted to be 1.) For c ∈ Y ′, all entries of Lc(z)|G are zero, except on the
diagonal, the first super diagonal, and the lower left entry. The same arguments as in the
proof of Lemma 4.3 show that there exist parameters c ∈ Y ′ such that Dc(z, λ) has Newton
polytope N (Γ). Thus Y ′ ∩ U 6= ∅, where U ⊂ Y is the set of Lemma 4.3.

Theorem 4.4. There exists an open subset U ′ of Y ′ with U ′ ⊂ U such that if c ∈ U ′, then
Var(Dc(z, λ)|F ) is a smooth hypersurface in (C×)d+1.

Since smoothness of Var(Dc(z, λ)|F ) is an open condition on the space Y of parameters,
this will complete the proof of Theorem 4.2, and thus also of Theorem C.

Proof. Let us write ψc(z, λ) for the facial polynomial Dc(z, λ)|F . We will show that the
set of c ∈ Y ′ such that Var(ψc(z, λ)) is singular is a finite union of proper algebraic sub-
varieties. As c ∈ Y ′, the only nonzero entries in the matrix (Lc(z) − λI)|G are its di-
agonal entries f1(z, λ), . . . , fm(z, λ) and the entries g1(z), . . . , gm(z) which are in positions
(1, 2), . . . , (m−1,m) and (m, 1), respectively. Thus

ψc(z, λ) = Dc(z, λ)|F = det((Lc(z)− λI)|G) =
m∏

i=1

fi(z, λ) − (−1)m
m∏

i=1

gi(z) .
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For a polynomial f in the variables (z, λ), write ∇T for the toric gradient operator,

∇Tf :=
(
z1

∂f

∂z1
, . . . , zd

∂f

∂zd
, λ

∂f

∂λ

)
.

Note that

(12) ∇Tψc =
m∑

i=1

(∇Tfi)f1 · · · f̂i · · · fm − (−1)m
m∑

i=1

(∇Tgi)g1 · · · ĝi · · · gm .

Here f̂i indicates that fi does not appear in the product, and the same for ĝi.
Let (z, λ) ∈ Var(ψc) be a singular point. Then ψc(z, λ) = 0 and ∇Tψc(z, λ) = 0. There

are five cases that depend upon the number of polynomials fi, gj vanishing at (z, λ).

(i) At least two polynomials fp and fq and two polynomials gr and gs vanish at (z, λ).
Thus ψ(z, λ) = 0 and by (12) this implies that ∇Tψc(z, λ) = 0.

(ii) At least two polynomials fp and fq and exactly one polynomial gs vanish at (z, λ).
Thus ψ(z, λ) = 0 and by (12) if ∇Tψc(z, λ) = 0, then ∇Tgs(z, λ) = 0.

(iii) Exactly one polynomial fp and at least two polynomials gr and gs vanish at (z, λ).
Thus ψ(z, λ) = 0 and by (12) if ∇Tψc(z, λ) = 0, then ∇Tfp(z, λ) = 0.

(iv) Exactly one polynomial fp and one polynomial gr vanish at (z, λ). Thus ψ(z, λ) = 0
and by (12) if ∇Tψc(z, λ) = 0, then, after reindexing so that p = r = 1, we have

(13) ∇Tf1(z, λ) ·
m∏

i=2

fi(z, λ) − (−1)m∇Tg1(z, λ) ·
m∏

i=2

gi(z, λ) = 0 .

(v) No polynomials fi or gi vanish at (z, λ).

In each case, we will show that the set of parameters c ∈ Y ′ such that there exist (z, λ)
satisfying these conditions lies in a proper subvariety of Y ′. Cases (i)—(iv) use arguments
based on the dimension of fibers and images of a map and are proven in the rest of this
section. Case (v) is proven in Section 4.3 and it uses Bertini’s Theorem. ¤

Let us write X for the space (C×)d+1 and x for a point (z, λ) ∈ X. We first derive
consequences of some vanishing statements. For a finite set F ⊂ Zd+1, let CF be the space
of coefficients of polynomials in x ∈ X with support F . This is the parameter space for
polynomials with support F .

Lemma 4.5. We have the following.

(1) For any x ∈ X, f(x) = 0 is a nonzero homogeneous linear equation on CF .
(2) For any x ∈ X, {∇Tf(x) | f ∈ CF} is the linear span CF of F .

Suppose that the affine span of F does not contain the origin. Then

(3) For any f ∈ CF and x ∈ X, ∇Tf = 0 implies that f(x) = 0.
(4) For any x ∈ X, the equation ∇Tf(x) = 0 defines a linear subspace of CF of codi-

mension dimCF .

Proof. Writing f =
∑

a∈F cax
a, the first statement is obvious. We have ∇Tf =

∑
acax

a.
As the coefficients ca are independent complex numbers and xa 6= 0, Statement (2) is
immediate. The hypothesis that the affine span of F does not contain the origin implies
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that any f ∈ CF is quasi-homogeneous. Statement (3) follows from Equation (11). The last
statement follows from the observation that the set of f such that ∇Tf = 0 is the kernel of
a surjective linear map CF

։ CF . ¤

Let F := G ∩ (A(Γ) ∪ {e}), where e = (0, 1), be the (common) support of the diagonal
polynomials fi and let G := G ∩ A(Γ) be the (common) support of the polynomials gj.
We either have that F = G or F = G ∪ {e}. Also, |F| > 1 as G is not a vertex, and as
G is a proper face of Q = conv(A(Γ) ∪ {e}), but not its base, the polynomials fi, gj are
quasi-homogeneous with a common quasi-homogeneity.
The parameter space for the entries of (Lc(z)− λI)|G is

Z :=
(
C

F)⊕m ⊕
(
C

G)⊕m .

We write c = (f•, g•) = (f1, . . . , fm, g1, . . . , gm) for points of Z. This is a coordinate subspace
of the parameter space Y ′. As Z contains exactly those parameters that can appear in the
facial polynomial ψc(x), it suffices to show that the set of parameters c = (f•, g•) ∈ Z such
that Var(ψc(x)) is singular lies in a proper subvariety of Z. The same case distinctions
(i)—(v) in the proof of Theorem 4.4 apply.
After reindexing, Case (i) in the proof of Theorem 4.4 follows from the next lemma.

Lemma 4.6. The set

Θ := {c ∈ Z | ∃x ∈ X with f1(x) = f2(x) = g1(x) = g2(x) = 0}

lies in a proper subvariety of Z.

Proof. Consider the incidence correspondence,

Υ := {(x, f•, g•) ∈ X × Z | f1(x) = f2(x) = g1(x) = g2(x) = 0} .

This has projections to X and to Z and its image in Z is the set Θ.
Consider the projection πX : Υ → X. By Lemma 4.5(1), for x ∈ X, each condition

fi(x) = 0, gi(x) = 0 for i = 1, 2 is a linear equation on CF or CG . These are independent
on Z as they involve different variables. Thus the fiber π−1

X (x) is a vector subspace of Z of
codimension 4, and dim(Υ) = dim(Z)− 4 + dim(X) = dim(Z) + d− 3.
Consider the projection πZ to Z and let (f•, g•) ∈ πZ(Υ). Then there is an x ∈ X such

that f1(x) = f2(x) = g1(x) = g2(x) = 0. Let w ∈ Zd+1 be a common quasi-homogeneity of
the polynomials fi, gj . By Lemma 3.6 (1), for any t ∈ C×, each of f1, f2, g1, g2 vanishes at
tw · x. Thus the fiber π−1

Z (f•, g•) has dimension at least one. By the Theorem [29, Theorem
1.25] on the dimension of the image and fibers of a map, the image πZ(Υ) has dimension at
most dim(Z) + d− 4 < dim(Z), which establishes the lemma. ¤

After reindexing and possibly interchanging f with g, Cases (ii) and (iii) in the proof of
Theorem 4.4 follow from the next lemma.

Lemma 4.7. The set

Θ := {c ∈ Z | ∃x ∈ X with f1(x) = f2(x) = g1(x) = 0 and ∇Tg1(x) = 0}

lies in a proper subvariety of Z.
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Proof. Consider the incidence correspondence,

Υ := {(x, f•, g•) ∈ X × Z | f1(x) = f2(x) = g1(x) = 0 and ∇Tg1(x) = 0} .

Let x ∈ X and consider the fiber π−1
X (x). As in the proof of Lemma 4.6, the conditions

f1(x) = f2(x) = 0 are two independent linear equations on Z. By Lemma 4.5 (3), ∇Tg1(x) =
0 implies that g1(x) = 0, and by Lemma 4.5 (4), the condition∇Tg1(x) = 0 is dimCG further
independent linear equations on Z.
If |G| = 1, so that g1 = cax

a is a single term, then g(x) = 0 implies that ca = 0.
Consequently, the image Θ of Υ in Z lies in a proper subvariety. Otherwise, |G| > 1 which
implies that dimCG ≥ 2, and thus the fiber has codimension at least 4. As in the proof of
Lemma 4.6, this implies that Θ lies in a proper subvariety of Z. ¤

Case (iv) in the proof of Theorem 4.4 is more involved.

Lemma 4.8. The set

Θ := {c ∈ Z | ∃x ∈ X with f1(x) = g1(x) = 0 and ∇Tψc(x) = 0}

lies in a proper subvariety of Z.

Proof. The set Θ includes the sets of Lemmas 4.6 and 4.7. Let Θ◦ ⊂ Θ be the set of
c = (f•, g•) that have a witness x ∈ X (f1(x) = g1(x) = 0 and ∇Tψc(x) = 0) such that none
of ∇Tf1(x), ∇Tg1(x), or fi(x)gi(x) for i > 1 vanish. It will suffice to show that Θ◦ lies in a
proper subvariety of Z.
For this, we use the incidence correspondence,

Υ := {(y, x, f•, g•) ∈ C
× ×X × Z | f1(x) = g1(x) = 0 ,

y
m∏

i=2

fi(x) − (−1)m
m∏

i=2

gi(x) = 0 , and ∇Tf1(x) − (−1)my∇Tg1(x) = 0} .

We show that Θ◦ ⊂ πZ(Υ). Let c = (f•, g•) ∈ Θ◦ with witness x ∈ X in that f1(x) =
g1(x) = 0 and ∇Tψc(x) = 0, but none of ∇Tf1(x), ∇Tg1(x), or fi(x)gi(x) for i > 1 vanish.
There is a unique y ∈ C× satisfying

y

m∏

i=2

fi(x) − (−1)m
m∏

i=2

gi(x) = 0 .

Dividing (13) by
∏m

i=2 fi(x) gives ∇Tf1(x)−(−1)my∇Tg1(x) = 0, and thus (y, x, f•, g•) ∈ Υ.
We now determine the dimension of Υ. Let (y, x) ∈ C× × X and consider the fiber

π−1(y, x) ⊂ Z above it in Υ. The two linear and one nonlinear equations

(14) f1(x) = g1(x) = y
m∏

i=2

fi(x)− (−1)m
m∏

i=2

gi(x) = 0

are independent on Z as they involve disjoint sets of variables, and thus define a subvariety
T ⊂ Z of codimension 3. Consider the remaining equation, ∇Tf1(x)− (−1)my∇Tg1(x) = 0.
Note that if e = (0, 1) lies in the support F of f1, so that F = G ∪ {e}, then ∇Tf1(x)

contains the term −e and thus cannot lie in the span CG of G, which contains ∇Tg1(x) by
Lemma 4.5(2). In this case the fiber is empty and Θ◦ = ∅.
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Suppose that F = G and (f•, g•) ∈ T . Let w ∈ Zd+1 be any homogeneity for f1 (or g1).
Then there exists wF 6= 0 such that w · a = wF for all a ∈ F . Equation (11) implies that

w · ∇Tf1(x) = wF f1(x) = 0 ,

and the same for g1. Thus ∇Tf1(x) and ∇Tg1(x) are annihilated by all homogeneities
and so lie in the affine span of F—the linear span of differences a−b for a, b ∈ F . This has
dimension dimCF−1. Consequently, ∇Tf1(x)−(−1)my∇Tg1(x) = 0 consists of dimCF−1
independent linear equations on the subset of CF ⊕ CF consisting of pairs f1, g1 such that
f1(x) = g1(x) = 0. These are independent of the third equation in (14). Thus the fiber
π−1(y, x) ⊂ Z has codimension 3 + dimCF − 1 = 2 + dimCF and so

dimΥ = dim(C× ×X) + dimZ − dimCF − 2 = dimZ + d− dimCF .

Let (f•, g•) ∈ πZ(Υ) have witness (y, x). That is, the equations (14) hold, as well as
∇Tf1(x) − (−1)my∇Tg1(x) = 0. As in the proof of Lemma 4.6, if w ∈ Zd+1 is a quasi-
homogeneity for polynomials of support F , then (y, tw · x) also satisfies these equations.
We have F = G = G∩A(Γ), so that G is a face of the base of Q. Thus there are at least

two (in fact the codimension of G in Q) independent homogeneities, which implies that the
fiber π−1

Z (f•, g•) has dimension at least two. This implies that the image Θ◦ has dimension
at most dimZ + d − dimCF − 2. Since G is not a vertex, dimCF ≥ 2, which shows that
dimΘ◦ < dimZ and completes the proof. ¤

4.3. Case (v). For α ∈ C×, define Ψ(α, f•, g•) ⊂ X to be the set

{
x ∈ X

∣∣∣ none of fi(x)gi(x) for i ≥ 1 vanish and
m∏

i=1

fi(x) − (−1)mα
m∏

i=1

gi(x) = 0
}
.

Case (v) in the proof of Theorem 4.4 follows from the next lemma.

Lemma 4.9. There is a dense open subset U1 ⊂ Z such that if (f•, g•) ∈ U1, then Ψ(1, f•, g•)
is smooth.

We will deduce this from a weaker lemma.

Lemma 4.10. There is a dense open subset U ⊂ C× × Z such that if (α, f•, g•) ∈ U , then
Ψ(α, f•, g•) is smooth.

Proof of Lemma 4.9. If we knew that the set U of Lemma 4.10 contained a point (1, f•, g•),
then U1 := U ∩ ({1} × Z) would be a dense open subset of Z, which would complete the
proof. As we do not know this, we must instead argue indirectly.
Suppose that there is no such open set U1 as in Lemma 4.9. Then the set Ξ ⊂ Z consisting

of (f•, g•) such that Ψ(1, f•, g•) is singular is dense in Z.
For α ∈ C× and (f•, g•) ∈ Z, define α.(f•, g•) to be (f•, α.g•) where

α.(g1, g2, . . . , gm) = (αg1, g2, . . . , gm) .

This is a C×-action on Z. Consequently, α.Ξ is dense in Z for all α ∈ C×.
Let U ⊂ C× × Z be the set of Lemma 4.10. As it is nonempty, let (α, f ′

•, g
′
•) ∈ U . Then

Uα := U ∩ ({α} × Z) is nonempty and open in {α} × Z. As α.Ξ is dense, we have

Uα

⋂(
{α} × α.Ξ

)
6= ∅ .
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This is a contradiction, for if (α, f•, g•) ∈ Uα, then Ψ(α, f•, g•) is smooth, but if (f•, g•) ∈
α.Ξ, then (f•, α

−1g•) ∈ Ξ and Ψ(1, f•, α
−1g•) is singular. The contradiction follows from

the equality of sets Ψ(α, f•, g•) = Ψ(1, f•, α
−1g•). ¤

Proof of Lemma 4.10. Let T ⊂ X × Z be the set of (x, f•, g•) such that none of fi(x)gi(x)
for i ≥ 1 vanish. Define ϕ : T → C× × Z by

ϕ(x, f•, g•) =
(
(−1)m

∏m

i=1 fi(x)/
∏m

i=1 gi(x) , f• , g•
)
.

Notice that ϕ−1(α, f•, g•) = Ψ(α, f•, g•) for (α, f•, g•) ∈ C× × Z.
We claim that ϕ(T ) is dense in C× × Z. For this, recall that the polynomials fi have

support F , which is G ∩ (A(Γ) ∪ {e}) for some face G of Q = conv(A(Γ) ∪ {e}) that is
neither its base nor a vertex, and the polynomials gi have support G = G ∩ A(Γ). Since G
is not a vertex, there are a, b ∈ F with a 6= b and b ∈ A(Γ).
Let fi := xa and gi := xb for i = 1, . . . ,m. Then X × {(f•, g•)} ⊂ T and for x ∈ X

ϕ(x, f•, g•) = (xma − (−1)mxmb, f•, g•). The map X = (C×)d+1 → C× given by x 7→
xma − (−1)mxmb is surjective as ma − mb 6= 0. This implies that the differential dϕ is
surjective at any point of X × {(f•, g•)}, and therefore ϕ(T ) is dense in C× × Z.
Since T is an open subset of the smooth variety X × Z, it is smooth. Then Bertini’s

Theorem [29, Thm. 2.27, p. 139] implies that there is a dense open subset U ⊂ C××Z such
that for (α, f•, g•) ∈ U , ϕ−1(α, f•, g•) = Ψ(α, f•, g•) is smooth. ¤

5. Critical points property

We illustrate our results, using them to establish the critical points property (and thus
the spectral edges nondegeneracy conjecture) for three periodic graphs. We first state this
property.
Let Γ be a connected Zd-periodic graph with parameter space Y = CE ×CW for discrete

operators on Γ. We say that Γ has the critical points property if there is a dense open
subset U ⊂ Y such that if c ∈ U , then every critical point of the function λ on the Bloch
variety Var(Dc(z, λ)) is nondegenerate in that the Hessian determinant

(15) det

((
∂2λ

∂zi∂zj

)d

i,j=1

)

is nonzero at that critical point. Here, the derivatives are implicit, using that D(z, λ) = 0.

5.1. Reformulation of Hessian condition. Let D = det(Lc(z) − λI) be the dispersion
function for an operator Lc on a periodic graph Γ. In Section 2 we derived the equations
for the critical points of the function λ on the Bloch variety Var(D(z, λ)),

(16) D(z, λ) = 0 and
∂D

∂zi
= 0 for i = 1, . . . , d .

Implicit differentiation of D = 0 gives ∂D
∂zj

+ ∂D
∂λ

· ∂λ
∂zj

= 0. If ∂D
∂λ

6= 0, then ∂λ
∂zj

= 0. If ∂D
∂λ

= 0,

then (z, λ) is a singular point hence is also a critical point of the function λ and so we again
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have ∂λ
∂zj

= 0. Differentiating again we obtain,

0 =
∂

∂zi

(
∂D

∂zj
+

∂D

∂λ
·
∂λ

∂zj

)
=

∂2D

∂zi∂zj
+

∂2D

∂zi∂λ
·
∂λ

∂zj
+

∂D

∂λ
·

∂2λ

∂zi∂zj
.

At a critical point (so that ∂λ
∂zj

= 0), we have

∂2D

∂zi∂zj
= −

∂D

∂λ
·

∂2λ

∂zi∂zj
.

Thus

det

((
∂2D

∂zi∂zj

)d

i,j=1

)
=

(
−
∂D

∂λ

)d

· det

((
∂2λ

∂zi∂zj

)d

i,j=1

)
.

Consider now the Jacobian matrix of the critical point equations (16),

J =




∂D
∂z1

. . . ∂D
∂zd

∂D
∂λ

∂2D
∂z2

1

. . . ∂2D
∂zd∂z1

∂2D
∂λ∂z1

...
. . .

...
...

∂2D
∂z1∂zd

. . . ∂2D
∂z2

d

∂2D
∂λ∂zd




.

At a critical point, the first row is (0 · · · 0 ∂D
∂λ

), and thus

det(J) =
∂D

∂λ
det

((
∂2D

∂zi∂zj

)d

i,j=1

)
= (−1)d

(
∂D

∂λ

)d+1

· det

((
∂2λ

∂zi∂zj

)d

i,j=1

)
.

A solution ζ of a system of polynomial equations on Cn is regular if the Jacobian of the
system at ζ has full rank n. Regular solutions are isolated and have multiplicity 1. We
deduce the following lemma.

Lemma 5.1. A nonsingular critical point (z, λ) on Var(Dc(z, λ)) is nondegenerate if and
only if it is a regular solution of the critical point equations (16).

The following theorem is adapted from arguments in [9, Sect. 5.4].

Theorem 5.2. Let Γ be a Zd-periodic graph. If there is a parameter value c ∈ Y such that
the critical point equations have (d+1)!vol(N (Γ)) regular solutions, then the critical points
property holds for Γ.

Proof. Let Y be the parameter space for operators L on Γ. Consider the variety

CP := {(c, z, λ) ∈ Y × (C×)d × C | the critical point equations (8) hold} ,

which is the incidence variety of critical points on all Bloch varieties for operators on Γ. Let
π be its projection to Y . For any c ∈ Y , the fiber π−1(c) is the set of critical points of the
function λ on the corresponding Bloch variety for Dc. By Corollary 2.5, there are at most
(d+1)!vol(N (Dc)) isolated points in the fiber.
Let c ∈ Y be a point such that the critical point equations have (d+1)!vol(N (Γ)) regular

solutions. Then (d+1)!vol(N (Γ)) ≤ (d+1)!vol(N (Dc)). By Lemma 4.3, N (Dc) is a sub-
polytope of N (Γ), so that vol(N (Dc)) ≤ vol(N (Γ)). We conclude that both polytopes have
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the same volume and are therefore equal. In particular, the corresponding Bloch variety
has the maximum number of critical points, and each is a regular solution of the critical
point equations (8). Because they are regular solutions, the implicit function theorem im-
plies that there is a neighborhood Uc of c in the classical topology on Y such that the map
π−1(Uc) → Uc is proper (it is a (d+1)!vol(N (Γ))-sheeted cover).
The set DC of degenerate critical points is the closed subset of CP given by the vanishing

of the Hessian determinant (15). Since π is proper over Uc, if DP = π(DC) is the image
of DC in Y , then DP ∩ Uc is closed in Uc. As the points of π−1(c) are regular solutions,
Lemma 5.1 implies they are all nondegenerate and thus c 6∈ DP , so that Uc r DP is a
nonempty classically open subset of Y consisting of parameter values c′ with the property
that all critical points on the corresponding Bloch variety are nondegenerate.
This implies that there is a nonempty Zariski open subset of Y consisting of parameters

such that all critical points on the corresponding Bloch variety are nondegenerate, which
completes the proof. ¤

By Theorem 5.2, it suffices to find a single Bloch variety with the maximum number of
isolated critical points to establish the critical points property for a periodic graph. The
following examples use such a computation to establish the critical points property for 219+2
graphs Γ. Computer code and output are available at the github repository2.

Example 5.3. Let us consider the dense Z2-periodic graph Γ of Figure 6. It has m = 2
points in its fundamental domain and the convex hull of its support A(Γ) has area 4. By
Theorem C, a general operator on Γ has 2! · 22+1 · 4 = 64 critical points. There are 13 edges

(0, 0, 2)

(−4, 0, 0)

(0,−2, 0)

(4, 0, 0)
(0, 2, 0)

Figure 8. Dense periodic graph and its polytope from Figure 6.

and two vertices in W , and independent computations in the computer algebra systems
Macaulay2 [17] and Singular [8] find a point c ∈ Y = C15 such that the critical point
equations have 64 regular solutions on (C×)2 × C. By Theorem 5.2, the critical points
property holds for Γ. These computations are independent in that the code, authors, and
parameter values for each are distinct. ⋄

2https://mattfaust.github.io/CPODPO.

https://mattfaust.github.io/CPODPO
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Example 5.4. The graph Γ in Figure 9 is not dense. Its restriction to the fundamental domain
is not the complete graph on 3 vertices and there are three and not nine edges between any
two adjacent translates of the fundamental domain. Altogether, it has 3 · 6 + 1 = 19 fewer
edges than the corresponding dense graph. Its support A(Γ) forms the columns of the
matrix ( 0 1 1 0 −1 −1 0

0 0 1 1 0 −1 −1 ) whose convex hull is a hexagon of area 3.

✡
✡
✡
✡
✡

✡
✡
✡
✡
✡

✁
✁
✁✁

✁
✁

✁✁

(0, 0, 3)(−1,−1, 1)

❆
❆
❆❆❯

(1, 2, 1)

✁
✁
✁
✁☛(−3,−3, 0)

(0,−3, 0)
(0, 3, 0)

(3, 0, 0)
(3, 3, 0)

(1,−1, 1)
✡
✡
✡
✡
✡✡✣

(2, 1, 1)

✻

Figure 9. Sparse graph with the same Newton polytope as the correspond-
ing dense graph.

Despite Γ not being dense, its Newton polytope N (Γ) is equal to the Newton polytope
of the dense graph with the same parameters, A(Γ) and W . Figure 9 displays the Newton
polytope, along with elements of the support of the dispersion function that are visible.
Observe that on each triangular face, there are four and not ten monomials.
By Theorem A (Corollary 2.5), there are at most 2! · 32+1 · 3 = 162 critical points. There

are eleven edges and three vertices in W , and independent computations in Macaulay2 and
Singular find a point c ∈ Y = C14 such that the critical point equations have 162 regular
solutions on (C×)2 × C. By Theorem 5.2, the critical points property holds for Γ.
Let Γ′ be a graph that has the same vertex set and support as Γ, and contains all the

edges of Γ—then [9, Thm. 22] implies that the critical points property also holds for Γ′.
This establishes the critical points property for an additional 219 − 1 periodic graphs. ⋄

Example 5.5. The graph Γ of Figure 10 has only ten edges but the same fundamental domain
W and support A(Γ) as the the graph of Figure 9, which had eleven edges. Its Newton
polytope is smaller, as it is missing the vertices (3, 3, 0) and (−3,−3, 0).
It has volume 70/3 and normalized volume 3! · 70/3 = 140. Independent computations

in Macaulay2 and Singular find a point c ∈ Y = C13 such that the critical point equations
have 140 regular solutions on (C×)2 × C. Thus there are no critical points at infinity, and
Theorem B implies that the Bloch variety is smooth at infinity.
As before, achieving the bound of Corollary 2.5 with regular solutions implies that all

critical points are nondegenerate and the critical points property holds for Γ. ⋄
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Figure 10. A periodic graph and its Newton polytope.

6. Conclusion

We considered the critical points of the complex Bloch variety for an operator on a
periodic graph. We gave a bound on the number of critical points—the normalized volume
of a Newton polytope—together with a criterion for when that bound is attained. We
presented a class of graphs (dense periodic graphs) and showed that this criterion holds for
general discrete operators on a dense graph. Lastly, we used these results to find 219 + 2
graphs on which the spectral edges conjecture holds for general discrete operators when
d = 2.
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19. A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31.
20. C. Kravaris, On the density of eigenvalues on periodic graphs, SIAM Journal on Applied Algebra and

Geometry, to appear. arXiv.org/2103:12734, 2021.
21. P. Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Appli-
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