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ON THE FUNDAMENTAL GROUP OF

OPEN RICHARDSON VARIETIES

CHANGZHENG LI, FRANK SOTTILE, AND CHI ZHANG

Abstract. We compute the fundamental group of an open Richardson variety in the
manifold of complete flags that corresponds to a partial flag manifold. Rietsch showed
that these log Calabi-Yau varieties underlie a Landau-Ginzburg mirror for the Langlands
dual partial flag manifold, and our computation verifies a prediction of Hori for this
mirror. It is log Calabi-Yau as it isomorphic to the complement of the Knutson–Lam–
Speyer anti-canonical divisor for the partial flag manifold. We also determine explicit
defining equations for this divisor.

1. Introduction

It is an old problem of Zariski [21] to compute the fundamental group of the complement
of an algebraic curve in the complex projective plane. The fundamental group of the
complement of a projective hypersurface reduces to the case of a plane curve by Zariski’s
Theorem of Lefschetz type [22]. More generally, one may ask about the fundamental
group of the complement of a divisor in a projective variety. Examples of importance in
mirror symmetry are log Calabi-Yau varieties [7, 8, 10], which are quasi-projective varieties
that are the complement of an anti-canonical divisor in a smooth projective variety. We
consider this case when the ambient projective variety is a flag variety.

Let G be a complex, simply-connected, simple Lie group with a Borel subgroup B. For
an element u in the Weyl group W of G, the (opposite) Schubert cells X̊u and X̊u in G/B
are affine spaces of codimension and dimension ℓ(u) respectively, where ℓ : W → Z≥0 is
the length function. The open Richardson variety

X̊w
v := X̊v ∩ X̊w

is irreducible and has dimension ℓ(w)−ℓ(v) if v ≤ w in Bruhat order and otherwise it is
empty. It is a log Calabi-Yau variety [11]. We pose the following:

Problem 1.1. What is the fundamental group of X̊w
v ?

Fundamental groups of log Calabi-Yau varieties arise in mirror symmetry, which is
about equivalences of two apparently completely different physical theories. For instance,
one mirror symmetry statement asserts that the small quantum cohomology of a Fano
manifold Y should be isomorphic to the Jacobi ring of a holomorphic function f : Z → C
defined on an open Calabi-Yau variety Z [2, 5, 6]. Such pair (Z, f) is a Landau-Ginzburg
model mirror to Y . The Jacobi ring of f is the coordinate ring of the critical points of
f , and therefore the mirror space Z is not uniquely determined. Nevertheless, physicists
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expect a mirror with certain optimal physical properties. According to Kentaro Hori1,
one of these properties is manifested in the fundamental group, π1(Z), of Z as follows.

Assertion 1.2. Let Y be a Fano manifold, and D be a specified anti-canonical divisor
on Y . If Aut(Y,D) contains a maximal compact torus (S1)m, then an optimal mirror
Landau-Ginzburg model (Z, f) should have π1(Z) = Zm.

We consider this when Z is an open Richardson variety X̊w0
wP

. Here, P ⊃ B is a parabolic
subgroup of G and w0 (resp. wP ) is the longest element in W (resp. the Weyl group WP

of the Levi subgroup of P ). This is a log Calabi-Yau variety, as it is isomorphic to the
complement of the Knutson-Lam-Speyer [11] anti-canonical divisor −KG/P in the flag
manifold G/P . Let G∨ (resp. P∨) denote the Langlands dual Lie group of G (resp. P ).

Rietsch [20] constructed a Landau-Ginzburg model (X̊w0
wP

, f) mirror to the flag manifold
G∨/P∨, assuming unpublished work of Peterson [18]. This has been verified when G∨/P∨

is a flag manifold of Lie type A [19] and when it is either a minuscule or a cominuscule flag
variety [12, 16, 17]. The automorphism group of G∨/P∨ is G∨ (except for three special
types of Grassmannians of Lie type B,C, or G2 which are homogeneous with respect to
a larger simple Lie group) [1]. The subgroup of Aut(G∨/P∨) that preserves −KG∨/P∨ is
a complex torus (C×)n−1, where G has rank n−1. Following Assertion 1.2 and the belief

that Rietsch’s mirror is optimal, we expect that π1(X̊
w0
wP

) = Zn−1. Our main result verifies
this prediction when G∨/P∨ has Lie type A.

Theorem 1.3. Let P be a parabolic subgroup of SL(n,C). Then π1(X̊
w0
wP

) = Zn−1.

A flag variety of Lie type A is determined by a sequence n• : 0 < n1 < · · · < nr < n of
integers. The corresponding flag variety Fℓ(n•) is the set of all sequences of subspaces

Fn1 ⊂ Fn2 ⊂ · · · ⊂ Fnr
⊂ Cn where dimFi = i .

This is a subvariety of the product of Grassmannians G(n1, n)×· · ·×G(nr, n). Under the

Plücker embedding of G(ni, n) into the projective space P(
n

ni
)−1

, the flag variety Fℓ(n•)

has a Plücker embedding into the product P(
n

n1
)−1

× · · · × P(
n

nr
)−1. Although Fℓ(n•) is a

compactification of X̊w0
wP

in this Plücker embedding, we prove Theorem 1.3 by considering

a different compactification of X̊w0
wP

in a single projective space. This allows us to reduce
Theorem 1.3 to Zariski’s classical case of a plane curve complement. We do this by
investigating the intersections of the different irreducible components of the Knutson-Lam-
Speyer [11] anti-canonical divisor −KFℓ(n•), whose defining equations we also determine.

A projected Richardson variety prP (X
w
v ) is the image of a Richardson variety Xw

v =
Xv ∩ Xw under the natural projection prP : G/B → G/P . This enjoys many geometric
properties of Richardson varieties, such as being normal, Cohen-Macaulay, and having
rational singularities [3, 4, 11]. The union of certain projected Richardson hypersur-
faces forms an anti-canonical divisor −KG/P of G/P [11]. Another main result is ex-
plicit defining equations in Theorem 4.1 for these projected Richardson hypersurfaces
in terms of the Plücker coordinates when G = SL(n,C). Each is given either by a
single Plücker variable or by a bilinear quadric. For instance, Fℓ(1, 3; 4) ⊂ P3 × P3

is the hypersurface V(x1x234 − x2x134 + x3x124 − x4x123) and −KFℓ(1,3;4) is the divisor

1Personal communication and talks.
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V(x1x234(x1x234 − x2x134)x4x123). We expect these explicit defining equations to also be
helpful in the study of the mirror symmetry for Fℓ(n•), similar to the study of mirror
symmetry for Grassmannians in [14].

The paper is organized as follows. We review basic facts on Richardson varieties in
Section 2. We provide an expectation for the fundamental group π1(X̊

v
id) in Section 3. For

G = SL(n,C), we derive the explicit defining equations of −KG/P in terms of the Plücker
coordinates in Section 4, and then compute the fundamental group of the complement
−KG/P in G/P in Section 5. Finally in Section 6, we provide the proof of Lemma 5.2.

2. Open Richardson varieties

Let G be a complex, simply-connected, simple Lie group of rank n−1, and B ⊂ G
be a Borel subgroup containing a maximal complex torus T ≃ (C×)n−1. Let ∆ =
{α1, . . . , αn−1} be a basis of simple roots in (Lie(T))∗. The Weyl group W of G is a
Coxeter group generated by the simple reflections {sα | α ∈ ∆}, and is identified with the
quotient NG(T)/T, where NG(T) is the normalizer of T in G. For each u ∈ W , choose a
lift u̇ ∈ NG(T). The opposite Borel is B− := ẇ0Bẇ0, where w0 is the longest element in
W . The (opposite) Schubert cells

X̊u := B−u̇B/B ∼= CdimG/B−ℓ(u) and X̊u : = Bu̇B/B ∼= Cℓ(u)

are independent of choice of lift u̇. Henceforth, we write u for u̇.
The root system of (G,B) is R := W ·∆ = R+ ⊔ (−R+), where R+ := R∩

⊕n−1
i=1 Z≥0αi

is the set of positive roots. Each root γ = w(αi) ∈ R gives a reflection sγ := wsiw
−1 ∈ W ,

independent of the expressions for γ. The Bruhat order on W is the transitive closure of
its covering relation, u ⋖ v for u, v ∈ W if ℓ(v) = ℓ(u) + 1 and v = usγ for some γ ∈ R,
where ℓ : W → Z≥0 is the length function. The open Richardson variety

X̊u
v : = X̊v ∩ X̊u

is irreducible and of dimension ℓ(u)− ℓ(v) if v ≤ u, and otherwise it is empty. Its closure,
a (closed) Richardson variety, is the intersection Xu

v := Xv ∩ Xu of (opposite) Schubert
varieties Xv and Xu, which are closures of the corresponding Schubert cells. As w2

0 = id,
we have the following identification of open Richardson varieties:

Proposition 2.1. For any v ∈ W , X̊w0
v

∼= X̊w0v
id .

Proof. X̊w0
v = w0Bw0vB/B ∩ Bw0B/B ∼= Bw0vB/B ∩ w0Bw0B/B = Xw0v

id . ¤

A proper parabolic subgroup P ) B determines and is determined by a proper subset
∆P ( ∆. The Weyl group WP of (the Levi subgroup) of P is the subgroup of W generated
by {sα | α ∈ ∆P}. Let W

P be the set of minimal length coset representatives of W/WP .
We write prP for both the natural projection G/B → G/P and the map W → W P

determined by w ∈ prP (w)WP . Then prP (w0) = w0wP ∈ W P , where wP is the longest
element in WP . Following [11], the P -Bruhat order, ≤P , is the suborder of the Bruhat
order whose covers are u⋖P v when u⋖ v and prP (u) < prP (v). The varieties

Π̊w
v := prP (X̊

w
v ) and Πw

v := prP (X
w
v )

are open and closed projected Richardson varieties, respectively. The next proposition is
implicit in [11]. We explain how it follows from explicit results there.
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Proposition 2.2. The open Richardson variety X̊w0
wP

is isomorphic to the complement in
G/P of

−KG/P :=
∑

id⋖u≤Pw0wP

prP (X
w0wP
u ) +

∑

id≤P v⋖w0wP

prP (X
v
id) ,

which is an anti-canonical divisor of G/P .

Proof. By Proposition 2.1, we have X̊w0
wP

∼= X̊w0wP

id . As id ≤P w0wP , we have dimΠw0wP

id =
ℓ(w0wP ) = dimG/P by [11, Corollary 3.2], and hence Πw0wP

id = G/P . By [11, Lemma 3.1],

X̊w0wP

id
∼= Π̊w0wP

id . By [11, Proposition 3.6], we have Πw0wP

id r Π̊w0wP

id = −KG/P . It follows
again from [11, Proposition 3.6, Corollary 3.2] that −KG/P is the sum of all projected
Richardson hypersurfaces in Πw0wP

id , and hence it is an anti-canonical divisor of Πw0wP

id by
[11, Lemma 5.4]. ¤

3. Expectation for π1(X̊
v
id)

The open Richardson variety X̊w0wP

id has the form X̊v
id where v ∈ W . We begin with

some well-known facts about fundamental groups.

Proposition 3.1 (Zariski Theorem of Lefschetz type [22]). Let V be a hypersurface in
PN . For almost every two-plane Λ ⊂ PN , the map

π1(Λr V ) −→ π1(P
N r V )

induced by the inclusion (Λr V ) →֒ (PN r V ) is an isomorphism.

Proposition 3.2 ([15]). Let C1 and C2 be algebraic curves in C2. Assume that the inter-
section C1 ∩C2 consists of d1d2 points where di is the degree of Ci. Then the fundamental
group π1(C

2 r C1 ∪ C2) is isomorphic to the product π1(C
2 r C1)× π1(C

2 r C2).

Subvarieties X and Y of projective or affine space meet transversally at a point p ∈
X ∩ Y if p is a smooth point of each and the defining equations for the tangent spaces
TpX and TpY are in direct sum. They meet transversally if they are transverse at every
point of their intersection, which implies that X ∩ Y is smooth and of the expected
dimension. They meet generically transversally if the subset of points of X ∩ Y where
they meet transversally is dense in every irreducible component of X ∩Y . The conditions
in Proposition 3.2 on the curves C1 and C2 is that they meet transversally. Indeed, by
Bézout’s Theorem, their projective completions meet in d1d2 isolated points, counted with
multiplicity. As their intersection consists of d1d2 points, they are transverse at every point
of their intersection.

Proposition 3.3 (see e.g. Remark 2.13 (1) of [13]). If C is a smooth algebraic curve in
C2 whose projective completion is transverse to the line at infinity, then π1(C

2 rC) = Z.

Since Xid = G/B, the Schubert cell X̊id is the complement of the union of Schubert

hypersurfaces Xsα for α ∈ ∆. For v ∈ W , the Schubert cell X̊v ∼= Cℓ(v). Therefore,

X̊v
id = X̊v ∩ X̊id = X̊v ∩Xid r Xv ∩ ∂Xid

= Cℓ(v) r Xv ∩ ∪α∈∆Xsα = Cℓ(v) r
⋃

α∈∆

Xv
sα .
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The Richardson variety Xv
sα has dimension ℓ(v)−1 (and contains X̊v

sα as a Zariski open
dense subset) if sα ≤ v, and otherwise it is empty. A Richardson variety is reduced and
normal, and thus its singular set has codimension at least two. Therefore, if Λ ⊂ Cℓ(v) =
X̊v is a general affine two-plane, then Cα := Xv

sα ∩ Λ is a smooth curve in Λ, whenever
sα ≤ v. If these curves satisfy the hypotheses of Propositions 3.2 and 3.3, we are led to
the following expectation. For any v ∈ W , define Γ(v) := {α ∈ ∆ | sα ≤ v}.

Conjecture 3.4. We have π1(X̊
v
id) = Z|Γ(v)|.

Example 3.5. The flag manifold SL(3,C)/B = {F1 ⊂ F2 ⊂ C3 | dimFi = i} is the
hypersurface V(x1x23−x2x13+x3x12) in P2×P2, where [x1, x2, x3] are coordinates for the

first P2 and [x12, x13, x23] are coordinates for the second. The Schubert cell X̊id (resp. X̊
w0)

is the subset of this hypersurface where x1x12 6= 0 (resp. x3x23 6= 0). Dehomogenizing
by setting x1 = x12 = 1, writing the remaining coordinates as (z2, z3, z13, z23) ∈ C4, and
using the equation 0 = z23 − z2z13 + z3 to solve for z23, we obtain

X̊w0
id = {(z2, z3, z13) ∈ C3 | z3 6= 0, z2z13 − z3 6= 0} .

This is the complement in C3 of two smooth hypersurfaces whose intersection is transverse
away from (0, 0, 0). Intersecting with a general two-plane Λ gives two smooth curves in Λ

that satisfy the hypotheses of Propositions 3.2 and 3.3. Thus π1(X̊
w0
id ) = Z2.

The Schubert subvariety Xs1s2 of SL(3,C)/B is V(x3, x1x23−x2x13). The Schubert cell

X̊s1s2 is the subset where x2x23 6= 0. Setting x2 = x23 = 1 and using z∗ for the remaining
coordinates, gives X̊s1s2 = {(z1, z12, z13) ∈ C3 | z1 − z13 = 0}. Solving for z13, we obtain

X̊s1s2
id = {(z1, z12) ∈ C2 | z1z12 6= 0}, which shows that π1(X̊

s1s2
id ) = Z2. Fundamental

groups of the remaining open Richardson varieties in SL(3,C)/B are as follows.

v id s1 s2 s1s2 s2s1 w0

Γ(v) ∅ {α1} {α2} {α1, α2} {α1, α2} {α1, α2}

π1(X̊
v
id) {id} Z Z Z2 Z2 Z2

⋄

We establish some lemmas that will help to rewrite the expression for −KG/P from
Proposition 2.2. They use basic facts about reflection groups as could be found in, for
example [9, §1].

Lemma 3.6. (1) If w = si1 · · · sim ∈ W P is a reduced expression of w, then sij · · · sim
is also in W P and is again a reduced expression (of length (m− j + 1)).

(2) If β ∈ ∆P and v ∈ W P satisfy both sβ 6≤ v and sβv 6= vsβ, then ℓ(sβv) = ℓ(v) + 1
and sβv ∈ W P .

Proof. (1) w ∈ W P if and only if ℓ(wsα) = ℓ(w) + 1 for all α ∈ ∆P . Since the given
expression of w is reduced, we have ℓ(sij · · · simsα) = (m − j + 1) + 1 = ℓ(sij · · · sim) + 1
for any α ∈ ∆P . Hence, sij · · · sim ∈ W P and it is a reduced expression.

(2) Since sβ 6≤ v, any reduced expression of v−1 does not contain sβ, and hence v−1(α) ∈
R+. Thus ℓ(sβv) = ℓ(v−1sβ) = ℓ(v−1) + 1 = ℓ(v) + 1.

For any α ∈ ∆P , we have v(α) ∈ R+ as v ∈ W P ; we claim sβv(α) ∈ R+ for all such α
and hence sβv ∈ W P . Indeed, if α 6= β, then we have v(α) 6= β, as any reduced expression
of v does not contain sβ. Moreover, v(β) 6= β (otherwise vsβv

−1 = sβ, contradicting to
the hypothesis). Therefore the claim holds by noting sβ(R

+ \ {β}) = R+ \ {β}. ¤



6 CHANGZHENG LI, FRANK SOTTILE, AND CHI ZHANG

Lemma 3.7. For any parabolic subgroup P , we have Γ(w0wP ) = ∆.

Proof. For any α ∈ ∆ r ∆P , we have wP (α) > 0 and thus w0wP (α) < 0. Consequently,
w0wP has a reduced expression ending with sα (by [9, §1.7 Exchange Condition]). Thus
w0wP ≥ sα and α ∈ Γ(w0wP ). It remains to show ∆P ⊂ Γ(w0wP ).

If ∆P 6⊂ Γ(w0wP ), then there exists α ∈ ∆P such that sα 6≤ w0wP . Since the
Dynkin diagram of ∆ is a tree, there exist {β1, . . . , βm} satisfying both (1) β1 = α,
{β1, . . . , βm−1} ⊂ ∆P , βm ∈ ∆ \∆P , and (2) βi is adjacent to βi+1 for i = 1, . . . ,m − 1.
Then for γ := sβ1 · · · sβm−1(βm) =

∑m
j=1 ajβj with aj > 0 for all j, we have wP (γ) =

wP (
∑m−1

j=1 ajβj) + wP (amβm) > 0 and consequently w0wP (γ) < 0. However, w0wP is in

the Weyl subgroup generated by {sβ | β ∈ ∆r{α}}, by the hypothesis sα 6≤ w0wP . Thus
we deduce a contradiction by noting w0wP (γ) = w0wP (a1α) +w0wP (

∑m
j=2 ajβj) > 0. ¤

For general G/P , the expectation π1(X̊
w0wP

id ) ≃ Z|∆| would follow from Conjecture 3.4
and Lemma 3.7. We refine the description of −KG/P of Proposition 2.2. Moreover, we
have the following.

Lemma 3.8. Let u ∈ W . Then we have

(1) id⋖ u ≤P w0wP if and only if u = sα for some α ∈ ∆.
(2) id ≤P u⋖ w0wP if and only if u = prP (w0sα) = w0sαwP for α ∈ ∆r∆P .

Proof. If id⋖ u, then u = sα for some α ∈ ∆. If α ∈ ∆ r∆P , then as in the beginning
of the proof of Lemma 3.7, w0wP admits a reduced expression w0wP = si1 · · · sil where
l = ℓ(w0wP ) and sil = sα. For j = 1, . . . , l, set vj := sil−j+1

· · · sil−1
sil . Then we have sα =

v1⋖· · ·⋖vl = w0wP with vj ∈ W P for any j by Lemma 3.6 (1), which implies prP (vj) = vj.
Hence, sα ≤P w0wP . If β ∈ ∆P , then we still have sβ ≤ w0wP by Lemma 3.7, so sβ must
occur in the aforementioned reduced expression of w0wP . Let m := max{j | sij = sβ}.
Set uj = sil−j+1

· · · sil−1
sil if l −m + 1 ≤ j ≤ l, uj = simsil−j+2

· · · sil−1
sil if 2 ≤ j ≤ l −m

(in which case sβuj = sil−j+2
· · · sil ∈ W P by Lemma 3.6 (1), and we will discuss whether

it commutes with sβ), and u1 = sim . Then we have sβ = u1 ⋖ · · · ⋖ ul = w0wP . For
j ≤ l − m, we notice that if uj = simujsim , then ur = simursim and simur ∈ W P hold
for any r ≤ j, and if uj 6= simujsim then uj ∈ W P by Lemma 3.6 (2). It follows that
sβ ≤P w0wP by definition.

If id ≤P u, then by definition we have ℓ(prP (u)) − ℓ(prP (id)) ≥ ℓ(u) − ℓ(id), implying
that ℓ(prP (u)) ≥ ℓ(u) and hence u ∈ W P . Together with u ⋖ w0wP , it follows that
ℓ(u) = ℓ(w0wP )− 1 = ℓ(w0)− ℓ(wP )− 1, so that ℓ(uwP ) = ℓ(w0)− 1. Hence, uwP = w0sα
for some α ∈ ∆. This further implies u = w0sαwP , and hence ℓ(w0) − ℓ(wP ) − 1 =
ℓ(u) = ℓ(w0sαwP ) = ℓ(w0)− ℓ(sαwP ). Therefore ℓ(sαwP ) = ℓ(wP ) + 1, implying α /∈ ∆P .
On the other hand, for α ∈ ∆ r ∆P , for any γ ∈ R+

P , we have wP (γ) ∈ R−
P , implying

sαwP (γ) ∈ R− and hence w0sαwP (γ) ∈ R+. Therefore prP (wsα) = wsαwP ∈ W P and
id ≤P wsαwP for any such α. ¤

Proposition 3.9. −KG/P =
∑

α∈∆

prP (X
w0wP
sα ) +

∑

α∈∆r∆P

prP (X
w0sαwP

id ).

Proof. This is a direct consequence of Proposition 2.2 and Lemma 3.8. ¤
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4. Defining equations of −KSL(n,C)/P

Henceforth, we assume that G = SL(n,C). Then SL(n,C)/P = Fℓ(n•) is the manifold
of partial flags F• : Fn1 ⊂ · · · ⊂ Fnr

⊂ Cn of type n• (dimFni
= ni). Here n• := 1 ≤

n1 < · · · < nr < n is an increasing sequence of integers and P is the parabolic subgroup
corresponding to the roots not in n•, so that ∆P = {αi | i 6∈ n•}. Also, W = Sn is the
symmetric group generated by simple transpositions {si | 1 ≤ i ≤ n−1}.

The natural embedding of Fℓ(n•) into the product

G(n1, n) × G(n2, n) × · · · × G(nr, n)

of Grassmannians and then into the product P(∧n1Cn)×· · ·×P(∧nrCn) of Plücker spaces
gives Plücker coordinates xJ for Fℓ(n•). We describe their indexing. For any positive

integerm, set [m] := {1, . . . ,m} and write
(

[m]
j

)

for the set of subsets J of [m] of cardinality

j, which we always write as increasing sequences. There is a Plücker coordinate xJ for
Fℓ(n•) for every J ∈

(

[n]
nj

)

, for each j = 1, . . . , r.

Let us explain xJ concretely in terms of local coordinates for Fℓ(n•). A point F• ∈ Fℓ(n•)
is represented by a nr × n matrix A• of full rank nr, where Fnj

is the row space of the

first nj rows of A•. For J ∈
(

[n]
nj

)

, the Plücker coordinate xJ of F• is the determinant of

the nj × nj submatrix of A• formed by the first nj rows and the columns from J . This is
the Jth minor of the matrix formed by the first nj rows of A•.

For a < b ≤ n, let us write (a, b] for the set {a+1, . . . , b} and [a, b) for {a, . . . , b−1}.
Note that (0, i] = [i]. If J ⊂ [a] and J ′ ⊂ (a, n], then J, J ′ is the index J ∪ J ′ ⊂ [n].

Elements of W P index Schubert varieties in Fℓ(n•), while elements of Sn index Schubert
varieties in Fℓ(n) = G/B. The Richardson variety Xw0wP

id projects birationally onto
Fℓ(n•), under the map prP : Fℓ(n) → Fℓ(n•). We describe explicit equations for the
irreducible components of −KFℓ(n•), which were identified in Proposition 3.9.

Theorem 4.1. Let i ∈ [n−1].

(1) For i ∈ n•, prP (X
w0siwP

id ) is the Schubert divisor of Fℓ(n•) defined by the Plücker
coordinate hyperplane x(n−i,n] = 0.

(2) When i ∈ n•, prP (X
w0wP
si

) is the Schubert divisor of Fℓ(n•) defined by the Plücker
coordinate hyperplane x[i] = 0.

(3) When i < n1, prP (X
w0wP
si

) is given by x[i],(n−n1+i,n] = 0.
(4) When i > nr, prP (X

w0wP
si

) is given by x(i−nr ,i] = 0.
(5) When nj < i < nj+1 with j ∈ [r−1], set k := i− nj and l := min{i, n−nj+1+k}.

The projected Richardson hypersurface prP (X
w0wP
si

) is given by

(4.1)
∑

J∈([l]k )

(−1)|J |x[i]rJ · xJ,(n−nj+1+k,n] = 0 ,

where |J | is the sum of the elements in J .

Proof. We start with the most involved case (5). As a first check, note that in (4.1) the
first Plücker coordinate x[i]rJ has nj indices, while xJ,(n−nj+1+k,n] has nj+1 indices. To
prove Statement (5), set a1 := n1 and ai := ni − ni−1 for i = 2, . . . , r. We start with a
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structured matrix parameterizing the Schubert cell X̊w0wP , which has the block form

(4.2)













∗ ∗ . . . ∗ ∗ Ia1
∗ ∗ . . . ∗ Ia2 0

∗ ∗ . .
.

. .
.

0 0
...

... . .
.

0 0 0
∗ Iar 0 · · · 0 0













nr×n

.

Here, Ia is the a × a identity matrix. Observe that the first column block has n−nr

columns. The hypersurface Schubert variety Xsi in G/B is defined by the single Plücker
coordinate x[i], which is not a Plücker coordinate on G/P when i 6∈ n•. Our equation

for prP (X
w0wP
si

) is obtained by evaluating x[i] on the coordinates (4.2) for X̊w0wP and
expressing it in terms of the Plücker coordinates for G/P .

To that end, suppose that i 6∈ n•, and for now that nj < i < nj+1 as above. Consider
the first i rows of (4.2),













∗ ∗ ∗ . . . ∗ ∗ Ia1
∗ ∗ ∗ . . . ∗ Ia2 0
...

...
... . .

.
. .
.

0 0
∗ ∗ ∗ Iaj 0 0 0
∗ Ik 0k,aj+1−k 0 · · · 0 0













i×n

.

Here, 0k,aj+1−k is the zero matrix with k rows and aj+1−k columns, and the first column
block has size n − nj+1. The Plücker coordinate x[i] is the determinant of the first i
columns of this matrix. Use Laplace expansion on the last k rows to get

x[i] =
∑

J∈([i]k )

x[i]rJ · zJ ,

where zJ is the Jth minor of the last k rows,
(

∗ Ik 0k,aj+1−k 0 · · ·
)

. Its last nonzero
column is in position n−nj+1+k, so we may assume that J ⊂ [l], as otherwise zJ = 0.

If we consider the form of the matrix (4.2) (specifically, its first nj+1 rows), then we see
that zJ = ±xJ,(n−nj+1+k,n], as the columns in the final positions in (n − nj+1 + k, n] all
end with a 1 in rows 1, . . . , nj , nj+k+1, . . . , nj+1. Rather than compute the sign, we note
that the sign does not depend upon J , but only on n• and i. Hence, prP (X

w0wP
si

) satisfies
the formula (4.1), and then this completes the proof, by noting that the hypersurface of
G/P defined by (4.1) is irreducible.

The arguments for cases (2), (3), (4) are similar and much simpler. Case (1) follows
from case (2) by noting prP (X

w0siwP

id ) = w0prP (X
w0wP
si

) for i ∈ n•. ¤

Example 4.2. For Fℓ(3, 6; 7), prP (X
w0wP
s4

) is given by x234x134567 − x134x234567 = 0, and
prP (X

w0wP
s5

) is given by x145x234567 − x245x134567 + x345x124567 = 0. ⋄

5. Fundamental group of the complement of −KFℓ(n•) in Fℓ(n•)

To study Fℓ(n•)r (−KFℓ(n•)), we first remove the Schubert divisors (1) in Theorem 4.1.
These are given by the Plücker coordinates x(n−nj ,n] for nj ∈ n•, and correspond to the
second sum in Proposition 3.9. This leaves the dense Schubert cell of Fℓ(n•), which is
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identified with X̊w0wP , and is parameterized by the coordinates (4.2). Let N := ℓ(w0wP )

so that X̊w0wP ≃ CN , and let PN := CN ⊔ P(CN) be its projective completion.

For any subvariety D of Fℓ(n•) which meets the cell X̊w0wP , we also write D for its
closure in PN . Write D0 for the hyperplane P(CN) at infinity and for i = 1, . . . , n−1, let

Di := prP (X
w0wP
si

) ∩ X̊w0wP be the image of a projected Richardson variety that meets

X̊w0wP . Set D := D0 ∪D1 ∪ · · · ∪Dn−1, a divisor in PN .

Theorem 5.1. The fundamental group of Fℓ(n•)r (−KFℓ(n•)) is Z
n−1.

Proof. Since PNrD ≃ Fℓ(n•) r (−KFℓ(n•)), we study the fundamental group of the hy-
persurface complement PN rD. Let Λ ⊂ PN be a general two-plane. For i = 0, . . . , n−1,
set Ci := Λ ∩Di and set C := Λ ∩D, which are curves, as Λ is general. We claim that:

(1) Each curve Ci is smooth.
(2) For i 6= j, then intersection Ci ∩ Cj is transverse.
(3) For i, j, k distinct Ci ∩ Cj ∩ Ck = ∅.

Given these claims, Propositions 3.2 and 3.3 imply that π1(ΛrC) = Zn−1, and Proposition
3.1 implies π1(P

N rD) = Zn−1, which implies the theorem.
By Bertini’s Theorem and the genericity of Λ, these three properties of the curves Ci

are consequences of the following three properties of the divisors Di.

(1) Each Di is smooth in codimension 1.
(2) For i 6= j, the intersection Di ∩Dj is generically transverse.
(3) For i, j, k distinct, the intersection Di ∩Dj ∩Dk has codimension three.

The hyperplane D0 at infinity in PN is smooth. For 0 < i the intersection Di ∩ CN

with the complement of D0 is isomorphic to an open part of the projected Richardson
variety prP (X

w0wP
si

) in Fℓ(n•). Projected Richardson varieties are normal [3, 4, 11], and
thus smooth in codimension 1. Therefore, the first property is satisfied.

For the second, we notice that for 0 < i < j, the intersection Xsi ∩Xsj is given by Xsisj

if j > i+ 1, or Xsisj ∪Xsjsi if j = i+ 1, and in either case the intersection is reduced. It
follows from the defining equations that prP (X

w0wP
si

)∩prP (X
w0wP
sj

) = prP (X
w0wP
si

∩Xw0wP
sj

),

and hence the intersection is given by prP (X
w0wP
sisj

) if j > i+1, or prP (X
w0wP
sisj

)∪prP (X
w0wP
sjsi

)
if j = i+ 1. Thus the intersection Di ∩Dj is generically transverse for 0 < i < j.

To show that D0 ∩ Di is generically transverse, we study the equations for Di. The
divisor Di is defined by the determinant f (i) of the upper left i× i submatrix of the local
coordinates (4.2). Write f (i) as a sum of homogeneous pieces,

f (i) = f
(i)
di

+ f
(i)
di−1 + · · · + f

(i)
0 ,

where deg f
(i)
j = j and deg f (i) = di. If z is a new homogenizing variable, so that z = 0

defines the hyperplane D0 at infinity in PN , then Di is defined in PN by

(5.1) f
(i)
di

+ zf
(i)
di−1 + z2f

(i)
di−2 + · · · + zdif

(i)
0 .

Lemma 5.2. With these definitions, we have the following.

(1) For each i ∈ [n−1], the top homogeneous component f
(i)
di

of Di is square-free. If

f (i) is inhomogeneous, then its second highest homogeneous component f
(i)
di−1 is

nonzero and coprime to f
(i)
di
.
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(2) For i, j ∈ [n−1] with i 6= j, the top homogeneous components of f (i) and f (j) are
coprime.

We will prove this in Section 6 and assume it for now. Then D0 ∩ Di = V(z, f (i)) is

defined in D0 by the top homogeneous component f
(i)
di

of f (i). Since f
(i)
di

is square-free,

D0 ∩ Di is reduced in the plane D0. When f (i) is homogeneous, this shows that the
intersection is generically transverse. When f (i) is inhomogeneous, the intersection will

be nontransverse where V(f
(i)
di
) is singular, and at points of V(f

(i)
di
, f

(i)
di−1). Since f

(i)
di

and

f
(i)
di−1 are coprime, we see again that the intersection is generically transverse.
Consider now the final point, that for i < j < k, Di ∩Dj ∩Dk has codimension three.

If i 6= 0, then this follows from the same fact about the Richardson divisors. We may also
see this from the defining equations, which give the following four cases.

i, j, k Di ∩Dj ∩Dk

i < j − 1 < k − 2 prP (X
w0wP
sisjsk

)

i = j − 1 < k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sjsisk

)

i < j − 1 = k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sisksj

)

i = j − 1 = k − 2 prP (X
w0wP
sisjsk

) ∪ prP (X
w0wP
sjsisk

) ∪ prP (X
w0wP
sksisj

) ∪ prP (X
w0wP
sksjsi

)

If i = 0, then this holds as f
(j)
dj

and f
(k)
dk

are coprime. ¤

6. Proof of Lemma 5.2

Let M be a principal a× a submatrix of (4.2). We will later show that its determinant
equals the determinant of a matrix with a block form (6.1) described below. Consequently,
we first investigate the factorization of the top homogeneous component of the determinant
of such a matrix, and use that to deduce Lemma 5.2. Until we deduce Lemma 5.2 at the
end of this section, all symbols, N , r, etc. will have different meanings than in Sections 4
and 5. We start with a well-known fact, as we will use similar arguments later.

Lemma 6.1. The determinant det
(

xij

)

a×a
of a matrix of indeterminates is irreducible.

Proof. Let g be this determinant, and note that it has degree one in every variable xij.
Suppose that g = pq. We may assume that x11 appears in p, so that p is of degree one
in x11. Then x1j appears in p for all j, for otherwise x1j appears in q, which implies that
x11x1j appears in g, which is a contradiction. Similarly, xj1 appears in p, and then similar
arguments show that each xjk appears in p. Consequently, q is constant. ¤

For sequences i• := (i1, i2, . . . , ir) and j• := (j1, j2, . . . , jr) of positive integers with
|i•| = |j•| = N , consider a matrix of the following form,

(6.1) M(i•; j•) :=



















∗ · · · · · · ∗ ∗ A1

∗ · · · · · · ∗ A2 Ii2,j1
... · · · . .

.
. .
.

. .
.

0
∗ . . . As Iis,js−1 0 0
... . .

.
. .
.

. .
.

0 0
Ar Iir,jr−1 0 · · · 0 0



















N×N

.
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Here, Ic,d is a c × d matrix with 1s on its diagonal and 0s elsewhere, the blocks Ar are
ir × jr matrices of indeterminates, and every ∗ denotes another matrix of indeterminates.
As the entries of M(i•; j•) that are not specified to be 0 or 1 are different indeterminates,
all properties of its determinant g = g(i•; j•) depend only upon the sequences i• and j•.
This includes whether or not g = 0, its degree, its irreducibility and factorization, as well
as the same properties of its top degree homogeneous component.

We need not determine whether g = 0, or if it is irreducible, or its degree. We do study
the factorization of its top degree homogeneous component. For this, we set

Υ(i•; j•) := {s ∈ [r−1] | i1 + · · ·+ is = j1 + · · ·+ js} .

We show that this set controls the factorization of the top homogeneous component of the
determinant g of M . For a polynomial f , let top(f) be the top homogeneous component
of f and snd(f) be the homogeneous component of f of degree deg(f)−1.

Lemma 6.2. Let g be the determinant of the matrix M(i•; j•) (6.1). Assume that g is
irreducible and nonzero. Then top(g) is reducible if and only if Υ(i•; j•) 6= ∅.

Proof. Suppose that Υ(i•; j•) 6= ∅. Let s ∈ Υ(i•; j•) and observe that removing Iis+1,js

from (6.1) gives a block upper left triangular matrix, ( ∗ ∗
∗ 0 ). Using Laplace expansion of g

along the first i1 + · · ·+ is rows of M(i•; j•), gives

g = ±

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · ∗ ∗ As+1

∗ ∗ As+2 Iis+2,js+1

... . .
.

. .
.

0
Ar Iir,jr−1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · ∗ ∗ A1

∗ ∗ A2 Ii2,j1
... . .

.
. .
.

0
As Iis,js−1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (other terms).

In the other terms, at least one column of the first minor is from the lower right submatrix
(

Iis+1,js 0
0 0

)

,

and thus its degree is strictly less than that of the first minor in the first term. Indeed,
the minor is zero if any column is zero, and if not, then expanding that minor along
the rows containing 1s from Iis+1,js shows that its degree drops by the number of such
rows/columns. However, the second minor has the same degree as the second minor in the
first term (as they have the same format M(i1, . . . , is; j1, . . . , js)). Since we assumed that
g 6= 0, these second minors are all nonzero, and we conclude that the degree of the other
terms is strictly less than that of the first term. Therefore, top(g) is given by the product
of top homogeneous components of the two minors in the first term of g, neither of which
is a constant (we see this by Laplace expansion along their first rows of indeterminates).
Thus Υ(i•; j•) 6= ∅ is sufficient for the reducibility of top(g).

We use induction on r for necessity. If r = 1, then we are done by Lemma 6.1. Suppose
that for any sequences i• and j• of length s < r with i1 + · · · + is = j1 + · · · + js, if
g(i•; j•) is irreducible and i1 + · · ·+ it 6= j1 + · · ·+ jt for all 1 ≤ t < s, then top(g(i•; j•))
is irreducible.

Let i• and j• be sequences of length r such that i1 + · · · + is 6= j1 + · · · + js for any
1 ≤ s < r, but i1 + · · ·+ ir = j1 + · · ·+ jr = N . Note that this implies that ir 6= jr.
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Assume ir < jr. Consider the Laplace expansion of g along the last ir rows of M(i•; j•).

For each L ∈
(

[N ]
ir

)

, write CL for the determinant of the square submatrix formed by

the columns from L and the last ir rows, and let ĈL be its cofactor (determinant of the
square submatrix formed by the columns from [N ]rL and the first N − ir rows, with the
appropriate sign). If b := min{ir, jr−1}, then

(6.2) g =
∑

L∈([jr+b]
ir

)

CLĈL =
∑

L∈([jr ]ir
)

CLĈL + (other terms) .

(The first sum is restricted as these are the only nonzero columns in the last ir rows.)
In the second expression, the degree of each of the (other terms) is strictly less than the

degree of the terms in the sum over L ∈
(

[jr]
ir

)

. Indeed, in each, the minor CL has degree

|L ∩ [jr]| < ir as L includes at least one column beyond the jrth. Thus these minors

have smaller degree than those in the sum over
(

[jr]
ir

)

. Also, each cofactor ĈL in either

expression is, up to a sign, the determinant of a matrix of the form (6.1) with indices

(6.3) M(i1, . . . , ir−2, ir−1 ; j1, . . . , jr−2, jr−1+jr−ir) .

Thus they are either all zero or all nonzero. As g 6= 0, we have ĈL 6= 0 for all L and they
all have the same degree and are irreducible. Indeed, suppose that for some L, ĈL = pq
factors with neither p nor q a constant. Since ĈL 6= 0, every entry in the lower left
ir−1 × (jr−1 + jr − ir) submatrix of the matrix for ĈL appears in ĈL, which we may see
by Laplace expansion along its last ir−1 rows. If one entry occurs in p, then the argument
used in the proof of Lemma 6.1 implies that they all do, and no such entry occurs in q.
But then q depends only on the last (j1 + · · ·+ jr−2) columns of the matrix for ĈL. Since

all the ĈL have the same form (6.3), they are all reducible with the same factor q. But
this implies that q divides g, contradicting the irreducibility of g.

As each CL for L ∈
(

[jr]
ir

)

is homogeneous of degree ir, we have

top(g) =
∑

L∈([jr ]ir
)

CL · top(ĈL) .

Each term of some minor CL occurs only in that minor, and therefore appears in top(g).
In particular, every indeterminate entry xst of the matrix Ar occurs in top(g). We note

that for each L, top(ĈL) is irreducible, by our induction hypothesis, as ĈL is irreducible
and the corresponding sequences in (6.3) have length r−1 < r and unequal partial sums.

Suppose that top(g) = pq factors as a product of polynomials. We may assume that x11

appears in p. Arguing as in the proof of Lemma 6.1 shows that each entry of Ar appears
in p, and none appears in q.

For L ∈
(

[jr]
ir

)

, let yL be the specialization obtained by replacing Ar by a matrix whose

only nonzero entries form the identity matrix in the columns of L. Since AK(yL) = δK,L,
the Kronecker delta, if we evaluate top(g) at this specialization, we obtain

top(ĈL) = top(g)(yL) = p(yL) · q(yL) = p(yL) · q .
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Since top(ĈL) is irreducible, if q is nonconstant, then p(yL) is a nonzero constant. Thus

for K,L ∈
(

[jr]
ir

)

with K 6= L, we have

p(yL) · top(ĈK) = p(yK) · top(ĈL) ,

which is a contradiction, as top(ĈK) and top(ĈL) have different indeterminates. (Expand

ĈL along a column of K r L, whose indeterminates do not appear in ĈK .)
Suppose that ir > jr. We prove that top(g) is irreducible by modifying the argument

for the case ir < jr. Since g is nonzero and irreducible, the matrix M(i•; j•) does not
contain a l × (N − l) submatrix of zeroes, for any l (containing such a submatrix implies
that M(i•; j•) is upper left triangular so that g factors, and a larger submatrix forces g to
be zero). Considering the last ir rows of M(i•; j•), this implies that ir < jr+jr−1.

The lower left ir × (jr+jr−1)-corner of M(i•; j•) is (A
r Iir,jr−1). This has jr+b nonzero

columns where b = min{ir, jr−1}. Let us reconsider the expansion (6.2) of g,

g =
∑

L∈([jr+b]
ir

)

CLĈL =
∑

L∈([jr+b]
ir

) , [jr]⊂L

CLĈL + (other terms) .

The cofactors ĈL as before are nonzero, have the same degree, and are irreducible. The
degree of CL is |L∩ [jr]|, so only the terms in the sum in the second expression contribute
to top(g). The rest of the argument proceeds as before. ¤

We deduce three corollaries from this proof. In all, g = detM(i•; j•) is assumed to be
nonzero and irreducible. Suppose that Υ(i•; j•) = {s1 < · · · < sm} 6= ∅. Set s0 := 0 and
sm+1 := r. For t = 0, . . . ,m, let

(6.4) M(i•; j•)t :=











∗ · · · ∗ A1+st

∗ · · · A2+st Ii2+st
,j1+st

... . .
.

. .
.

0
Ast+1 Iist+1 ,jst+1−1 0 0











,

which is a square submatrix of M(i•; j•).

Corollary 6.3. If Υ(i•; j•) 6= ∅, then the irreducible factorization of top(g) is f0 · · · fm,
where ft = top(det(M(i•; j•)t)).

Proof. That top(g) = f0 · · · fm is a consequence of the proof of sufficiency in Lemma 6.2.
The irreducibility of each ft is a consequence of the proof of necessity (using mathematical

induction and arguing as for the irreducibility of ĈL therein). ¤

Remark 6.4. When s ∈ Υ(i•; j•), let m := i1 + · · ·+ is. Then the matrix M(i•; j•) has a
block structure

(6.5)

(

∗ M
M ′ P

)

,

where ∗ is am×(N−m) matrix of indeterminates, M andM ′ are structured matrices (6.1)
with parameters

M = M(i1, . . . , is; j1, . . . , js) M ′ = M(is+1, . . . , ir; js+1, . . . , jr) ,
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and P is a (N−m)×m matrix with block structure ( I 0
0 0 ), where I = Iis+1,js . In particular,

the 2 × 2 submatrix on the anti-diagonal in rows m,m+1 (and columns n−m,n−m−1)
is ( ∗ ∗

∗ 1 ), where ∗ indicates an indeterminate. In particular,

top(detM(i•; j•)) = top(detM) · top(detM ′) . ⋄

Corollary 6.5. Every indeterminate in each matrix Ak for k = 1, . . . , r appears in top(g).

Proof. This can be proven by induction on k, using the same arguments as in the proof
of necessity in Lemma 6.2. ¤

Corollary 6.6. If r = 1, then g = top(g) is homogeneous and if r > 1, then snd(g) 6= 0.

Proof. If r = 1, then i1 = j1 = N , and g = detA1 is a homogeneous polynomial.
Assume that r > 1. Expand g along the last ir rows of M(i•; j•) as in the proof of

necessity in Lemma 6.2,

g =
∑

L∈([jr+b]
ir

)

CL ĈL .

Recall that CL is homogeneous of degree |L ∩ [jr]| and that ĈL is the determinant of a
matrix with format (6.3), and thus these all have the same degree. As the maximum value
for |L ∩ [jr]| is min{ir, jr}, we have

snd(g) =
∑

|L∩[jr]|=min{ir ,jr}

CL · snd(ĈL) +
∑

|L∩[jr]|=min{ir ,jr}−1

CL · top(ĈL) .

The same arguments as before show that there is no cancellation in these sums. In
particular, the second sum is nonempty and nonzero, which implies that snd(g) 6= 0. ¤

Lemma 6.7. Let g be the determinant of M(i•; j•) and assume that g is nonzero, irre-
ducible, and inhomogeneous. Then snd(g) 6= 0 and top(g) is coprime to snd(g).

Proof. Since g is inhomogeneous, r > 1 and snd(g) 6= 0, by Corollary 6.6. If Υ(i•; j•) = ∅,
then top(g) is irreducible by Lemma 6.2 and thus is coprime to snd(g) as it has greater
degree.

Now suppose that Υ(i•; j•) 6= ∅, so that top(g) is reducible, and that one of its factors di-
vides snd(g). We use the notation of Corollary 6.3. Suppose that for some t ∈ {0, . . . ,m},
we have snd(g) = hft, for some polynomial h. Here, ft = top(gt), where gt is the deter-
minant of the submatrix Mt := M(i•; j•)t of M(i•; j•) as defined in (6.4).

Suppose that Mt has columns indexed by the interval [a, b] and rows by [c, d], and
n := b−a+1 is its size. Let us consider the expansion of g = detM(i•; j•) along the rows
[c, d] of Mt,

(6.6) g = C[a,b]Ĉ[a,b] +
∑

L∈([N ]
n ) , L 6=[a,b]

CLĈL .

Suppose that δ := deg(g). By Corollary 6.3, only the first term in (6.6) has degree δ. As
in Section 5, let pδ−1 be the homogeneous component of degree δ−1 in the polynomial p.
Then

(6.7) hft = snd(g) = snd(C[a,b]Ĉ[a,b]) +
∑

L 6=[a,b]

(

CLĈL

)

δ−1
.
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If we specialize the indeterminates not appearing in C[a,b]Ĉ[a,b] to zero, we obtain

hft = snd(C[a,b]Ĉ[a,b]) = top(C[a,b])snd(Ĉ[a,b]) + snd(C[a,b])top(Ĉ[a,b]) ,

where h is the specialization of h. Since ft = top(C[a,b]) is irreducible and top(Ĉ[a,b]) 6= 0,
we conclude that snd(C[a,b]) = 0. Since C[a,b] = detMt, and it is irreducible (as top(C[a,b])
is irreducible), Corollary 6.6 implies that 1+st = st+1 so that Mt = Ast+1 is a square
matrix of indeterminates. Thus ft = detMt and every term of ft involves a variable from
each column of Mt.

The only variables from rows in [c, d] in terms of g come from C[a,b] and the minors CL

in the sum in (6.6). Each CL for L 6= [a, b] is the determinant of a matrix with at least one

column not from among [a, b], consequently, there is no term of CL and hence of CLĈL

that involves a variable from each column of Mt. This implies that ft cannot divide the
sum of (6.7), and thus no term in the sum of (6.6) has degree δ−1. We will show that
the sum of (6.6) has degree δ−1, which is a contradiction. This will imply that top(g) is
coprime to snd(g) and complete the proof.

Observe that the matrix M(i•; j•) has the following block form





∗ ∗ M(i′
•
; j′

•
)

∗ Mt P
M(i′′

•
; j′′

•
) Q 0



 ,

where i′
•
= i1, . . . , ist and i′′

•
= i1+st+1 , . . . , ir, and the same for j′

•
and j′′

•
. Both P and Q

have block structure ( I 0
0 0 ), where I = Ii1+st

,ist
for P and I = Ii1+st+1 ,ist+1

for Q. If t = 0,

then M(i′
•
; j′

•
) and its rows and columns are omitted, while if t = m, then M(i′′

•
; j′′

•
) and

its rows and columns are omitted, but at most one of these occurs, as m ≥ 1. Note that
Ĉ[a,b] = detM(i′

•
; j′

•
) · detM(i′′

•
; j′′

•
).

If t 6= m, then a > 1 and let L := {a−1}, (a, b]. Then CL is the determinant of the
matrix obtained from Mt by replacing its first column of variables with another column of
variables, so degCL = degC[a,b]. Similarly, ĈL is the product detM(i′

•
; j′

•
) · detM , where

M is obtained from M(i′′
•
; j′′

•
) by replacing its last column with the first column of Q.

This amounts to setting all variables in the last column of M(i′′
•
; j′′

•
) to zero, except for

the first, which is set to 1. This variable was in the block A1+st+1 , and by Corollary 6.5 it
appears in top(detM(i′′

•
; j′′

•
)). This implies that the degree of CLĈL is δ−1.

If t 6= 0, then b < N and we let L = [a, b), {b+1}. We have deg ĈL = deg Ĉ[a,b], as they
are determinants of matrices of the same format. However, CL is obtained from C[a,b] by
setting all variables in the last column of Mt to zero, except the for the first, which is
set to 1. This again implies that the degree of CLĈL is δ−1, which shows that the sum
of (6.6) has degree δ−1, and completes the proof. ¤

Proof of Lemma 5.2. Recall that we are considering Fℓ(n•). Set a1 := n1, at := nt − nt−1

for t = 2, . . . r, and ar+1 := n−nr. Let us augment the coordinates (6.1) to a square
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matrix by appending (Iar+1 0) in the remaining rows as follows:

(6.8)



















∗ ∗ · · · ∗ ∗ Ia1
∗ ∗ · · · ∗ Ia2 0
...

... . .
.

. .
.

0 0
... ∗ . .

.
. .
.

0 0

∗ Iar 0 . .
.

0 0
Iar+1 0 0 . . . 0 0



















n×n

.

For a ∈ [n], the divisor Da is given by the a× a principal minor f (a) of this matrix. Each
minor f (a) is nonzero and irreducible as Da is irreducible. For a ≤ min{nr, n−n1}, the
a × a principal minor is the determinant of the first a rows and a columns of (6.8), and
thus has the form (6.1). If min{nr, n−n1} < a ≤ n, then the matrix formed by the first a
rows and a columns of (6.8) does not have this form. When n−n1 < a, its last a+ n1 − n
columns have an identity matrix in the first a+ n1 − n rows and 0s elsewhere, and when
nr < a, its last a − nr rows have an identity matrix in the first a − nr columns and 0s
elsewhere.

In the first case, removing the first a+n1−n rows and last a+n1−n columns does not
change the determinant, and in the second case, removing the first a − nr columns and
a−nr columns does not change the determinant. After these removals, we are left with a
matrix having the form (6.1). Hence, by Lemma 6.1 and Corollary 6.3, every polynomial
top(f (a)) is either irreducible or a product of distinct irreducible polynomials, and hence
is square-free. By Lemma 6.7, top(f (a)) and snd(f (a)) are coprime whenever f (a) is not
homogeneous (in which case snd(f (a)) 6= 0). This proves statement (1) of Lemma 5.2.

For statement (2), let us first consider the irreducible factorization of top(f (a)) for
a ∈ [n−1]. Let M (a) be the principal a × a submatrix of (6.8). By Corollary 6.3 and
Remark 6.4, the factorization of top(f (a)) is determined by decompositions of M (a) as
in (6.5). That is, by the rows of M (a) whose 2× 2 block along the anti-diagonal is ( ∗ ∗

∗ 1 ).
From the form of (6.8) this occurs when the northwest 1 of some Ias is in the indicated
position. In this case, a+ as = n and it occurs in row ns + 1 and column a− ns + 1.

Thus each row ns giving the block structure of (6.8) will contribute to the factorization
of a unique top(f (a)), namely when a = n− as. Suppose that

top(f (a)) = f
(a)
0 · f

(a)
1 · · · f (a)

ma

is the irreducible factorization of top(f (a)). Here, ma is the number of indices s such that

a + as = n and f
(a)
i := top(det(M

(a)
i )), where M

(a)
i is the corresponding submatrix of

M (a). These matrices M
(a)
0 , . . . ,M

(a)
ma lie along the anti-diagonal of M (a) between adjacent

rows ns, ns′ such that as = aa′ = n− a (or row 1 when i = 0 or row a when i = ma).

Statement (2) follows from the claim that if a 6= b, then for all i, j, f
(a)
i 6= f

(b)
j , as these

are irreducible. To prove the claim, let M ′ be the matrix M
(a)
i , after removing rows and

columns coming from Ia1 if a + a1 > n and i = 0 and after removing rows and columns
corresponding to Iar+1 if a > nr and i = ma. Then M ′ has structure as in (6.1) and

by Corollary 6.5 each variable of each anti-diagonal block At of M ′ appears in f
(a)
i . The

claim now follows, as this set of variables is different for distinct a and i. ¤
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22. , A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937),

no. 1, 131–141.



18 CHANGZHENG LI, FRANK SOTTILE, AND CHI ZHANG

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China

E-mail address : lichangzh@mail.sysu.edu.cn
URL: http://math.sysu.edu.cn/gagp/czli

Department of Mathematics. Texas A&M University College Station, TX 77843, USA

E-mail address : sottile@math.tamu.edu
URL: http://www.math.tamu.edu/~sottile

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China

E-mail address : zhangch223@mail2.sysu.edu.cn; chizhmath@gmail.com


