SOME MORE GEOMETRY IN THE SECONDARY FAN

ATA FIRAT PIR AND FRANK SOTTILE

Abstract. The space of degenerations of a projective toric variety forms a toric variety associated to the secondary fan of the integer points in the polytope corresponding to the toric variety. This identifies the moduli space of real degenerations with the secondary polytope. A configuration \mathcal{A} of real vectors gives an irrational projective toric variety in a simplex. We identify the moduli space of degenerations of the irrational projective toric variety with the secondary polytope of \mathcal{A}. For this, we develop a theory of irrational toric varieties associated to arbitrary fans. When the fan is rational, the irrational toric variety is the nonnegative part of the corresponding classical toric variety. When the fan is the normal fan of a polytope, the irrational toric variety is homeomorphic to that polytope.

Introduction

A vector $a \in \mathbb{R}^n$ is the exponent of a monomial x^a, where $x \in \mathbb{R}^n_+$ has positive coordinates. A set \mathcal{A} of N real vectors lying on an affine hyperplane gives a map from \mathbb{R}^n_+ to the nonnegative orthant \mathbb{R}^N_+. The closure of the image is an affine irrational toric variety. This is a union of rays, and the corresponding subset $Z_\mathcal{A}$ of the standard simplex is an irrational projective toric variety [7, 13]. The positive orthant \mathbb{R}^N_+ acts multiplicatively on $Z_\mathcal{A}$, and our primary goal is to identify the moduli space of Hausdorff limits of translates of $Z_\mathcal{A}$.

When $\mathcal{A} \subset \mathbb{Z}^n$ is a collection of integer vectors, $Z_\mathcal{A}$ is the positive part of a complex projective toric variety, and limits of its translations under the torus of the ambient projective space form a toric variety associated to the secondary fan of \mathcal{A} [17, 18]. In this case, the moduli space of Hausdorff limits of $Z_\mathcal{A}$ is homeomorphic to the secondary polytope of \mathcal{A} [13]. When $\mathcal{A} \subset \mathbb{R}^n$ is not necessarily a collection of integer vectors, all Hausdorff limits were shown in [26] to be complexes of toric varieties related to the secondary fan of \mathcal{A}. The authors were unable to identify the set of Hausdorff limits with the secondary polytope. The obstruction was due to a lack of a complete theory of irrational toric varieties, including a construction from arbitrary fans and a relation to polytopes. We develop that theory and use it to identify the space of Hausdorff limits of translations of $Z_\mathcal{A}$ with the secondary polytope of \mathcal{A}.

Toric varieties are important in algebraic geometry and its applications in part because they form a rich class of objects whose structure may be completely understood from combinatorics. A second reason is their elementary definitions—either as a normal variety equipped with an action of an algebraic torus having a dense orbit [12], or as a not necessarily normal affine variety parameterized by monomials [14, 31]. Normal toric varieties enjoy a functorial construction from a rational fan Σ, while a finite set \mathcal{A} of integer vectors (exponents) defines
an affine variety parameterized by monomials. These two versions of toric varieties coincide when \(\mathcal{A} \) is the set of integer points in its convex hull, whose normal fan is \(\Sigma \) [6].

As varieties parameterized by monomials, toric varieties arose in applications of mathematics before they were studied in algebraic geometry. A log-linear model in statistics [15] is the nonnegative (real) part of a toric variety for some set \(\mathcal{A} \). In this setting, the expectation map is a version of the moment map from symplectic geometry [1, 16]. The basic properties of the moment map—that its image is the convex hull of \(\mathcal{A} \) and it is a bijection between this convex hull and the nonnegative part of the toric variety—were essentially proven by Birch in 1963 [4]. A modern proof of Birch’s theorem is given in [24, p. 14].

Log-linear models are more flexible than toric varieties: \(\mathcal{A} \) can be any finite set of real vectors. Toric varieties also appear as generalizations of Bézier patches in geometric modeling [20]. Again, it is the nonnegative part that is relevant [30], and toric Bézier patches are naturally defined when \(\mathcal{A} \) is any finite set of real vectors [7]. Both statistics and geometric modeling lead to irrational affine toric varieties.

We develop a theory of toric varieties associated to arbitrary fans in \(\mathbb{R}^n \). Such an irrational toric variety is an \(\mathbb{R}^n_\mathbb{R} \)-equivariant cell complex with a dense orbit whose cells are dual to the cones of the associated fan. This construction is functorial; maps of fans give equivariant maps of irrational toric varieties, and the fan may be recovered from the toric variety.

This theory of irrational toric varieties has a similar motivation to the development of small covers [8] from toric topology [5], noncommutative toric varieties [19], and Ford’s toroidal embedding from an irrational fan [11]—these all generalize some aspects of toric varieties to more general polytopes and fans. This is a vast subject. For its current state, we recommend the survey [32]. We extend the theory and construction of toric varieties to objects which have arisen in the applications of mathematics, specifically log-linear models in statistics [15] and toric patches in geometric modeling [20]. Consequently, the objects we construct are distinct from these other generalizations, although we expect a relation to some small covers and to LVM manifolds [21, 22], and more generally to symplectic tori quasifolds [2, 3, 27].

In Section 1, we sketch the classical construction of a toric variety from a rational fan, and recall that a toric variety is a functor on commutative monoids. We recall some properties of irrational affine toric varieties in Section 2. We construct irrational toric varieties from arbitrary fans in Section 3, and establish their main properties. Section 4 develops global properties of irrational toric varieties. While our results on irrational toric varieties parallel some on classical toric varieties, their proofs require different methods, as fundamental facts from algebraic geometry do not hold for irrational toric varieties. This is condensed from the 2018 Texas A&M Ph.D. thesis of Pir [25]. Having developed this theory, we use it in Section 5 to establish our main result, identifying the moduli space of Hausdorff limits of a projective irrational toric variety with the secondary polytope.

1. Classical Toric Varieties

We review the construction of toric varieties in algebraic geometry from rational fans and recall some of their properties. For additional treatment of toric varieties, see any of [6, 10, 12]. For more on geometric combinatorics, see [14, 31, 33].
Let \(N \in \mathbb{Z} \) be a free abelian group of rank \(n \) \((N \in \mathbb{Z} \cong \mathbb{Z}^n)\) and let \(M \in \mathbb{Z} \) := \(\text{Hom}(N, \mathbb{Z}) \) be its dual group. Write \(u \cdot v \in \mathbb{Z} \) for the pairing, where \(u \in M \) and \(v \in N \). Write \(\mathbb{T}_N \) for the abelian group scheme \(\text{spec} \mathbb{Z}[M] \). This is a torus (integral abelian group scheme) as \(\mathbb{Z}[M] \) is a domain. Its lattice of cocharacters is \(N \) and \(M \) is its lattice of characters.

Let \(R > 0 \) be the positive real numbers and \(\mathbb{R} \geq 0 \) be the nonnegative real numbers. Let \(N \) be the real vector space \(N \otimes \mathbb{Z} \mathbb{R} \left(\cong \mathbb{R}^n \right) \). A (polyhedral) cone \(\sigma \subset N \) is a submonoid of the form
\[
\text{cone}\{v_1, v_2, \ldots, v_k\} := \mathbb{R}_\geq v_1 + \mathbb{R}_\geq v_2 + \cdots + \mathbb{R}_\geq v_k,
\]
where \(v_1, \ldots, v_k \in N \). (A monoid is a set endowed with an associative commutative operation with identity.) The dual cone of a polyhedral cone \(\sigma \subset N \) lies in \(M := M \otimes \mathbb{Z} \mathbb{R} \), and is \(\sigma^\vee := \{u \in M \mid u \cdot v \geq 0, \ \forall v \in \sigma\} \).

This is again a (polyhedral) cone in \(M \) and \((\sigma^\vee)^\vee = \sigma \). A face of a cone \(\sigma \) is a subset of the form \(\{v \in \sigma \mid u \cdot v = 0\} \), for some \(u \in \sigma^\vee \). A face of a cone is another cone. The relative interior \(\sigma^\circ \) of a cone \(\sigma \) is the complement in \(\sigma \) of its proper faces.

The minimal face of a cone \(\sigma \) is a linear space \(L \), called its lineality space. This is the maximal linear subspace contained in \(\sigma \). The dual cone to \(L \) is its annihilator, \(L^\perp = L^\vee \) and \(\sigma^\vee \subset L^\perp \). The lineality space of the dual cone \(\sigma^\vee \) is the annihilator \(\sigma^\perp \) of \(\sigma \), and the dual to \(\sigma^\perp \) is the linear span \(\langle \sigma \rangle \) of \(\sigma \), which is also the annihilator of \(\sigma^\perp \).

We record one technical fact about faces of cones and their duals.

Proposition 1.1. Let \(\sigma, \tau \subset N \) be cones with \(\tau \) a face of \(\sigma \). Then for any \(w \in \tau^\vee \), there are \(u, \ell \in \sigma^\vee \) with \(\ell \in \tau^\perp \) such that \(w = u - \ell \).

A fan \(\Sigma \subset N \) is a finite collection of polyhedral cones in \(N \) with the property that every face of every cone \(\sigma \) in \(\Sigma \) is again a cone in \(\Sigma \), and if \(\sigma, \tau \) are cones in \(\Sigma \), then \(\sigma \cap \tau \) is a face common to both \(\sigma \) and \(\tau \). The cones in a fan have a common lineality space. A fan \(\Sigma \subset N \) is complete if every point of \(N \) lies in some cone of \(\Sigma \). Figure 1 shows two fans. The second is complete,
scheme. (Normal as S_{τ} is saturated.) When $\tau \subset \sigma$ is a face of σ, we have $\sigma^\vee \subset \tau^\vee$. Then $S_{\tau} \subset S_{\sigma}$ and the induced map $W_{\tau} \hookrightarrow W_{\sigma}$ is an open inclusion. Suppose that Σ is a rational fan in N. The toric scheme X_{Σ} is obtained by gluing the affine schemes W_{σ} for σ a cone in Σ along common subschemes corresponding to smaller cones in Σ.

$$X_{\Sigma} := \bigcup_{\sigma \in \Sigma} W_{\sigma}.$$

The scheme X_{Σ} is normal as each W_{σ} is normal and normality is a local property.

The map $\Delta: S_{\sigma} \to M_{\mathbb{Z}} \times S_{\sigma}$ given by $\Delta(u) = (u, u)$ induces a ring map $\Delta: \mathbb{Z}[S_{\sigma}] \to \mathbb{Z}[M_{\mathbb{Z}}] \otimes \mathbb{Z}[S_{\sigma}]$, so that $\mathbb{Z}[S_{\sigma}]$ is a $\mathbb{Z}[M_{\mathbb{Z}}]$-comodule. This induces an action $T_N \times W_{\sigma} \to W_{\sigma}$ of the group scheme T_N on W_{σ}. This action is compatible with the inclusions $W_{\tau} \hookrightarrow W_{\sigma}$ when τ is a face of σ, and therefore gives an action of T_N on the toric scheme X_{Σ}.

If L is the lineality space of Σ, then $S_L = L^\perp \cap M_{\mathbb{Z}}$, which is a free abelian summand of $M_{\mathbb{Z}}$. Then $W_L = \text{spec} \mathbb{Z}[S_L]$ is the quotient T_N/T_L, where T_L is the group subscheme of T_N generated by the cocharacters in $L \cap N_{\mathbb{Z}}$. The action of T_N on X_{Σ} factors through the quotient $T_N/T_L = W_L$, so that W_L is isomorphic to a dense orbit of this action. Thus X_{Σ} is a normal scheme equipped with an action of a torus T_N having a dense orbit.

Given any field K, X_{Σ} has a set $X_{\Sigma}(K)$ of K-rational points constructed by the same gluing procedure from the points $W_{\sigma}(K)$ of $\text{spec} K[S_{\sigma}]$ with residue field K. There is another perspective that associates a set $X_{\Sigma}(\mathcal{M})$ to a commutative monoid $(\mathcal{M}, *, 1_{\mathcal{M}})$. This is functorial in that a map $f: \mathcal{M} \to \mathcal{M}'$ of monoids induces a map $f_*: X_{\Sigma}(\mathcal{M}) \to X_{\Sigma}(\mathcal{M}')$.

The construction of $X_{\Sigma}(\mathcal{M})$ is similar to that of the scheme X_{Σ}. For each cone σ of Σ, set $W_{\sigma}(\mathcal{M}) := \text{Hom}_{\text{mon}}(S_{\sigma}, \mathcal{M})$, the set of monoid homomorphisms, which are maps $\varphi: S_{\sigma} \to \mathcal{M}$ with $\varphi(0) = 1_{\mathcal{M}}$ and $\varphi(a + b) = \varphi(a) * \varphi(b)$ for all $a, b \in S_{\sigma}$. Restriction gives inclusion maps $W_{\tau} \hookrightarrow W_{\sigma}$, with $X_{\Sigma}(\mathcal{M})$ constructed by gluing as before.

Multiplication in a field K gives it the structure of a monoid with 0 an absorbing element ($0x = 0$ for all $x \in K$). The restriction of any algebra homomorphism $K[S_{\sigma}] \to K$ to S_{σ} is a monoid homomorphism, and every monoid homomorphism $\varphi: S_{\sigma} \to K$ extends by linearity to an algebra homomorphism $K[S_{\sigma}] \to K$. Thus the two definitions for $W_{\sigma}(K)$ agree, and so we may construct $X_{\Sigma}(K)$ by gluing sets of monoid homomorphisms.

This illuminates some structure of the set $X_{\Sigma}(K)$ of K-points. If $t \in T_N(K)$ and $\varphi \in \text{Hom}_{\text{mon}}(S_{\sigma}, K)$, then $t \varphi$ is the monoid homomorphism such that for $u \in S_{\sigma}$,

$$(t \varphi)(u) = t^u \varphi(u),$$

where t^u is the value of the character u at t.

The maps of monoids $\mathbb{R}_{\geq} \hookrightarrow \mathbb{R} \hookrightarrow \mathbb{C} \to \mathbb{R}_{\geq}$ with the last map $z \mapsto |z|$ has composition the identity. For any rational fan Σ, this induces maps

$$X_{\Sigma}(\mathbb{R}_{\geq}) \hookrightarrow X_{\Sigma}(\mathbb{R}) \hookrightarrow X_{\Sigma}(\mathbb{C}) \twoheadrightarrow X_{\Sigma}(\mathbb{R}_{\geq}),$$

whose composition is the identity. The set $X_{\Sigma}(\mathbb{R}_{\geq})$ is the nonnegative part of the toric variety X_{Σ} and the map $X_{\Sigma}(\mathbb{C}) \to X_{\Sigma}(\mathbb{R}_{\geq})$ is a version of the moment map [30].
2. Irrational Affine Toric Varieties

Let M and N be dual finite-dimensional real vector spaces, and write the pairing $M \times N \to \mathbb{R}$ as $(u, v) \mapsto u \cdot v$. The vector space N is the torus for our irrational toric varieties. We often write N as T_N and use multiplicative notation for its group operation. We identify T_N with the multiplicative group $\text{Hom}_c(M, \mathbb{R}_>)$ of continuous homomorphisms from M to the multiplicative group $\mathbb{R}_>$. Here, an element $v \in N$ is sent to the homomorphism γ_v whose value at $u \in M$ is $\exp(-u \cdot v)$. (The negative sign is for compatibility with certain limits.) When $t = \gamma_v$, we write t^u for $\gamma_v(u)$. Elements of M are characters (continuous multiplicative homomorphisms to $\mathbb{R}_>$) of T_N and elements $t \in T_N$ are cocharacters. For a linear subspace $L \subset N$, we will write T_L for the corresponding subgroup of T_N.

Let \mathcal{A} be a finite subset of M and set $\sigma := \text{cone}(\mathcal{A})$, a polyhedral cone in M. A subset $\mathcal{F} \subset \mathcal{A}$ is a face of \mathcal{A} if it consists of the points of \mathcal{A} lying on a face τ of σ. Necessarily, cone(\mathcal{F}) = τ. Let $\varphi_\mathcal{A} : T_N \to \mathbb{R}_>^\mathcal{A}$ be the map given by

$$T_N \ni t \mapsto (t^a | a \in \mathcal{A}) \in \mathbb{R}_>^\mathcal{A}.$$

We are using \mathcal{A} as an index set, so that $\mathbb{R}_>^\mathcal{A}$ is the set of $|\mathcal{A}|$-tuples of nonnegative real numbers whose coordinates are indexed by elements of \mathcal{A}. (This is the nonnegative orthant of $\mathbb{R}^\mathcal{A}$.) The map $\varphi_\mathcal{A}$ is a group homomorphism from T_N to $\mathbb{R}_>^\mathcal{A}$, which is the set of points of $\mathbb{R}^\mathcal{A}$ with nonzero coordinates. Write $Y^\sigma_{\mathcal{A}}$ for the image of T_N under $\varphi_\mathcal{A}$, and let $Y_{\mathcal{A}}$ be the closure of $Y^\sigma_{\mathcal{A}}$ in the usual topology on $\mathbb{R}_>^\mathcal{A}$. We call $Y_{\mathcal{A}}$ an irrational affine toric variety. It inherits a T_N-action from the homomorphism $\varphi_\mathcal{A}$.

Remark 2.1. Under the map $\gamma : N \xrightarrow{\sim} T_N$ and the coordinatewise map $-\log : \mathbb{R}_>^\mathcal{A} \xrightarrow{\sim} \mathbb{R}^\mathcal{A}$, the map φ becomes the linear map $N \to \mathbb{R}^\mathcal{A}$,

$$N \ni v \mapsto (a \cdot v | a \in \mathcal{A}) \in \mathbb{R}^\mathcal{A}.$$

This is why irrational toric varieties in algebraic statistics are called log-linear models.

The kernel of $\varphi_\mathcal{A}$ is T_{A^\perp}, where A^\perp is the subspace of N that annihilates \mathcal{A},

$$A^\perp := \{ v \in N | a \cdot v = 0 \ \forall a \in \mathcal{A} \}.$$

and thus Y_{A^\perp} is isomorphic to T_N/T_{A^\perp} ($\simeq N/A^\perp$). When $\mathcal{A} \subset M_{\mathbb{Z}}$, the ideal of $Y_{\mathcal{A}}$ is spanned by binomials determined by \mathcal{A} [31, Lem. 4.1]. This remains true when $\mathcal{A} \subset M$.

Proposition 2.2. The irrational affine toric variety $Y_{\mathcal{A}}$ is the set of points $z \in \mathbb{R}_>^\mathcal{A}$ that satisfy all binomial equations of the form

$$\prod_{a \in \mathcal{A}} z_a^{\lambda_a} = \prod_{a \in \mathcal{A}} z_a^{\mu_a},$$

where $\lambda, \mu \in \mathbb{R}_>^\mathcal{A}$ satisfy $\sum_{a \in \mathcal{A}} \lambda_a a = \sum_{a \in \mathcal{A}} \mu_a a$.

If \mathcal{A} lies on an affine hyperplane in M, this was shown in [7, Prop. B.3], and its proof can be modified for the general case, see [25] for details.

For each face $\mathcal{F} \subset \mathcal{A}$, there is an inclusion $\mathbb{R}_>^\mathcal{F} \subset \mathbb{R}_>^\mathcal{A}$, where $\mathbb{R}_>^\mathcal{F}$ is the set of $z \in \mathbb{R}_>^\mathcal{A}$ whose coordinates z_a are zero for $a \notin \mathcal{F}$. Then $Y^\sigma_{\mathcal{A}} \cap \mathbb{R}_>^\mathcal{F}$ is the image of T_N under the map $\varphi_\mathcal{F}$,
which is also the composition of φ_A with the projection to the coordinate orthant \mathbb{R}^F_\geq. The proof of Proposition 2.2 shows that $Y_F^\circ \subset Y_A$ and also that

$$Y_A = \bigsqcup Y_F^\circ,$$

the (disjoint) union over faces F of A. This is also the decomposition of Y_A into orbits of T_N, where the orbit Y_F° is in bijection with $T_N/T_{F\perp} \simeq N/F\perp$.

The affine toric variety Y_A is a subset of the nonnegative orthant \mathbb{R}^A_\geq. The tautological map π_A parameterizing cone(A) has domain \mathbb{R}^A_\geq:

$$\pi_A : \mathbb{R}^A_\geq \ni \lambda = (\lambda_a \mid a \in A) \mapsto \sum_{a \in A} \lambda_a a \in \text{cone}(A).$$

Consequently, $\pi_A(Y_A) \subset \text{cone}(A)$. By Birch’s Theorem [4], this map is a homeomorphism between Y_A and $\text{cone}(A)$.

Proposition 2.3 (Birch). *The restriction of the tautological map $\pi_A : \mathbb{R}^A_\geq \to \text{cone}(A)$ to the irrational affine toric variety Y_A is a homeomorphism,*

$$\pi_A : Y_A \cong \text{cone}(A).$$

If A lies on an affine hyperplane in M, this was shown in [24, Thm. 1.10], and its proof can be modified for the general case, see [25] for details. By (3), each orbit Y_F° is mapped homeomorphically to the relative interior of cone(F).

The results together show that Y_A is a T_N-equivariant cell complex, with one cell for each face F of cone(A), were the T_N-action realizes that cell as $T_N/T_{F\perp} (\simeq N/F\perp)$.

3. Irrational Toric Varieties From Fans

We construct a T_N-equivariant cell complex Y_Σ associated to a fan $\Sigma \subset N$, which we call an irrational toric variety. This follows the construction of the nonnegative part $X_\Sigma(\mathbb{R}^\Sigma_\geq)$ of a toric variety at the end of Section 1, and it yields this nonnegative part when Σ is a rational fan. For each cone σ of Σ, we construct a topological space V_σ with a T_N-action that is equivariantly homeomorphic to an irrational affine toric variety Y_A, but not canonically. Given a face $\tau \subset \sigma$, there is a natural equivariant inclusion $V_\tau \hookrightarrow V_\sigma$. The irrational toric variety Y_Σ is constructed by gluing the irrational affine toric varieties V_σ for σ a cone in Σ along common subvarieties corresponding to smaller cones in Σ.

3.1. Irrational affine toric varieties from cones

Let $C \subset M$ be a polyhedral cone. Define $\text{Hom}_e(C, \mathbb{R}^\Sigma_\geq)$ to be the set of all monoid homomorphisms $\varphi : C \to \mathbb{R}^\Sigma_\geq$ that are continuous on the relative interior of each face of C. We endow this with the weakest topology such that every evaluation at a point of C is continuous. That is, a sequence $\{\varphi_n \mid n \in \mathbb{N}\} \subset \text{Hom}_e(C, \mathbb{R}^\Sigma_\geq)$ converges to $\varphi \in \text{Hom}_e(C, \mathbb{R}^\Sigma_\geq)$ if and only if, for every $u \in C$, the sequence $\{\varphi_n(u) \mid n \in \mathbb{N}\}$ of real numbers converges to $\varphi(u)$.

Example 3.1. Suppose that $M = \mathbb{R}$ and $C = [0, \infty)$. Let $\varphi \in \text{Hom}_e(C, \mathbb{R}^\Sigma_\geq)$. Because φ is a monoid homomorphism, $\varphi(0) = 1$. Set $\alpha := \varphi(1) \geq 0$. As φ is a monoid homomorphism, for every $n \in \mathbb{N}$ with $n \geq 1$, we have $\varphi(n) = \alpha^n$. For $n \in \mathbb{N}$, we have $\varphi(1/n) = \alpha^{1/n}$, as

$$\alpha = \varphi(1) = \varphi(n \cdot \frac{1}{n}) = (\varphi(1/n))^n.$$
Similarly, if \(r \in \mathbb{Q} \) is positive, then \(\varphi(r) = \alpha^r \). By the continuity of \(\varphi \) on the interior \((0, \infty)\) of \(C \), \(\varphi(s) = \alpha^s \) for \(s > 0 \). Here, if \(\alpha = 0 \), then \(\alpha^s = 0 \) and if \(\alpha > 0 \), then \(\alpha^s = \exp(s \log \alpha) \).

If we further set \(\alpha^0 := 1 \) for any \(\alpha \geq 0 \) (that is, \(0^0 = 1 \)), then \(\varphi(s) = \alpha^s \) for \(s \geq 0 \).

For \(\alpha \in (0, \infty) \) write \(\varphi_\alpha \) for the monoid homomorphism such that \(\varphi_\alpha(s) = \alpha^s \). We display the graphs of \(\varphi_\alpha \) for several values of \(\alpha \).

Observe that for \(s > 0 \), we have \(\lim_{\alpha \to 0} \varphi_\alpha(s) = 0 \) while \(\varphi_\alpha(0) = 1 \) for all \(\alpha \), so that \(\lim_{\alpha \to 0} \varphi_\alpha = \varphi_0 \). Thus the evaluation map \(\varphi \mapsto \varphi(1) \) induces a homeomorphism between \(\text{Hom}_c(C, \mathbb{R}_\geq) \) and \([0, \infty)\). Note that restricting a map \(\varphi \in \text{Hom}_c(C, \mathbb{R}_\geq) \) to \(N \subset C \) gives a homeomorphism between \(\text{Hom}_c(C, \mathbb{R}_\geq) \) and \(\text{Hom}_{\text{mon}}(N, \mathbb{R}_\geq) \).

\[\text{Lemma 3.2. Let } C \subset M \text{ be a polyhedral cone. For any } \varphi \in \text{Hom}_c(C, \mathbb{R}_\geq), \text{ the set } \{ u \in C \mid \varphi(u) > 0 \} \text{ is a face of } C. \]

We will call this face the \textit{support} of \(\varphi \) and write \(\text{supp}(\varphi) \) for this face.

\[\text{Proof. As in Example 3.1, if } s \in \mathbb{R}_\geq \text{ and } u \in C, \text{ then } \varphi(su) = (\varphi(u))^s. \text{ Suppose that } u \text{ lies in the relative interior } \tau^o \text{ of a face } \tau \text{ of } \sigma \text{ and } \varphi(u) = 0. \text{ Then } \varphi(su) = 0 \text{ for } s > 0. \text{ For } w \in \tau^o, \text{ there is an } s > 0 \text{ with } w - su \in \tau^o, \text{ and so } \varphi(w) = \varphi(w - su)\varphi(su) = 0. \]

Let \(S := \{ u \in C \mid \varphi(u) > 0 \} \), which is closed under sum and multiplication by \(\mathbb{R}_\geq \), so it is a convex cone. If \(S \) meets the relative interior \(\tau^o \) of a face \(\tau \) of \(C \), then it contains \(\tau^o \), by the previous arguments. In fact, \(\tau \subset S \). Indeed, if \(u \in \tau \) and \(w \in \tau^o \), then \(w + u \in \tau^o \) so that

\[0 \neq \varphi(w + u) = \varphi(w)\varphi(u), \]

so that \(\varphi(u) \neq 0 \) and thus \(u \in S \). A convex union of faces of a polyhedral cone is a face of that cone, which completes the proof. \(\square \)

\[\text{Example 3.3. If } L \text{ is a linear subspace of } M, \text{ then for any } \varphi \in \text{Hom}_c(L, \mathbb{R}_\geq) \text{ and } x \in L, \text{ we have that } \varphi(x) > 0. \text{ Indeed, } -x \in L \text{ so } 1 = \varphi(0) = \varphi(x + (-x)) = \varphi(x)\varphi(-x). \text{ In particular, } \text{Hom}_c(L, \mathbb{R}_\geq) = \text{Hom}_c(L, \mathbb{R}_\geq), \text{ which is isomorphic to } T_L = T_N/T_{L^\perp} \simeq N/L^\perp. \]

Applying \(\text{Hom}_c(-, \mathbb{R}_\geq) \) to the map \(C \to M \oplus C \) given by \(u \mapsto (u, u) \) induces a map

\[(4) \quad \mu : \text{Hom}_c(M, \mathbb{R}_\geq) \times \text{Hom}_c(C, \mathbb{R}_\geq) \to \text{Hom}_c(C, \mathbb{R}_\geq), \]

written \(\mu(t, \varphi) = t\varphi \), which is the map defined at \(u \in C \) by \(t\varphi(u) = t(u)\varphi(u) = t^u \varphi(u) \). This gives a continuous action of \(T_N = \text{Hom}_c(M, \mathbb{R}_\geq) \) on \(\text{Hom}_c(C, \mathbb{R}_\geq) \).

\[\text{Lemma 3.4. Let } A \subset M \text{ be finite and set } C := \text{cone}(A). \text{ Then the map } f_A : \text{Hom}_c(C, \mathbb{R}_\geq) \to \mathbb{R}_\geq^A \text{ given by } f_A : \varphi \mapsto (\varphi(a) \mid a \in A), \]
is a T_N-equivariant homeomorphism between $\text{Hom}_c(C, \mathbb{R}_\geq)$ and the irrational affine toric variety Y_A. In particular, $\text{Hom}_c(C, \mathbb{R}_\geq)$ is homeomorphic to C under the map $\varphi \mapsto \sum_{a \in A} \varphi(a)a$.

Observe that this homeomorphism depends on the choice of a generating set A for C.

Proof. Let $\varphi \in \text{Hom}_c(C, \mathbb{R}_\geq)$ and suppose that $u \in C$ has two representations as a nonnegative combination of elements of A, $u = \sum \lambda_a a = \sum \mu_a a$ for $\lambda, \mu \in \mathbb{R}_{\geq}^A$. Since C is a homeomorphism between $\text{Hom}_c(C, \mathbb{R}_\geq)$ and the irrational affine toric variety Y_A, the given formulas show that they are $\text{Hom}_c(C, \mathbb{R}_\geq)$-equivariant. The identification $\text{Hom}_c(C, \mathbb{R}_\geq)$ of elements of $\text{Hom}_c(C, \mathbb{R}_\geq)$ is determined by its values $\varphi(a)$ and $\varphi(b)$, which may be any two nonnegative numbers. Thus

$$f_A(\varphi)(u) = \varphi\left(\sum \lambda_a a\right) = \prod_{a \in A} (\varphi(a))^{\lambda_a},$$

$f_A(\varphi)$ satisfies the equations (2), and therefore $f_A(\varphi)$ lies in Y_A, by Proposition 2.2.

Conversely, let $z \in Y_A$. Then by (5) and the equations (2) for Y_A, the function $\varphi_z : A \to \mathbb{R}_\geq$ defined by $\varphi_z(a) = z_a$ extends to a monoid homomorphism $C = \text{cone} A \to \mathbb{R}_\geq$. By the decomposition (3), there is a face F of A such that $z \in Y_F$. Then φ_z is continuous and nonvanishing on $F := \text{cone}(F)$. We show that φ_z is identically zero on $C \setminus F$, and thus it lies in $\text{Hom}_c(C, \mathbb{R}_\geq)$.

Note that if $b \in A \setminus F$, then $z_b = 0$ and thus $\varphi_z(b) = 0$. If $u \in C \setminus F$, then in any expression $u = \sum_{a \in A} \lambda_a a$ with $\lambda_a \geq 0$, there is some $b \in A \setminus F$ with $\lambda_b > 0$. Thus

$$\varphi_z(u) = (\varphi_z(b))^{\lambda_b} \varphi_z\left(\sum_{a \in A \setminus \{b\}} \lambda_a a\right) = 0.$$

The maps $\varphi \mapsto f_A(\varphi)$ and $z \mapsto \varphi_z$ are inverse bijections which are continuous and therefore homeomorphisms. The given formulas show that they are T_N-equivariant. The identification between $\text{Hom}_c(C, \mathbb{R}_\geq)$ and C now follows by Birch’s Theorem (Proposition 2.3). \qed

Example 3.5. Let $C := \text{cone}\{a, b\}$, where $a = (-\sqrt{2}, 1)$ and $b = (1, 0)$. Elements of C have unique expressions as nonnegative combinations of a and b, so that a map $\varphi \in \text{Hom}_c(C, \mathbb{R}_\geq)$ is determined by its values $\varphi(a)$ and $\varphi(b)$, which may be any two nonnegative numbers. Thus the map $\psi : \varphi \mapsto \varphi(a)a + \varphi(b)b$ is a homeomorphism between $\text{Hom}_c(C, \mathbb{R}_\geq)$ and C.

Adding a generator $c = (1, 1)$ of C, if $\varphi \in \text{Hom}_c(C, \mathbb{R}_\geq)$, then $\varphi(c) = \varphi(a)\varphi(b)1 + \sqrt{2}$, as we have $c = a + (1 + \sqrt{2})b$. By Lemma 3.4, $\varphi \mapsto (\varphi(a), \varphi(b), \varphi(c))$ is a homeomorphism $\text{Hom}_c(C, \mathbb{R}_\geq) \to Y_{(a,b,c)}$. Composing with the tautological map $\pi_{(a,b,c)}$ gives

$$\varphi \mapsto \varphi(a)a + \varphi(b)b + \varphi(c)c = \varphi(a)a + \varphi(b)b + \varphi(a)\varphi(b)1 + \sqrt{2}c,$$

which is a homeomorphism between $\text{Hom}_c(C, \mathbb{R}_\geq)$ and C that is different from ψ. This illustrates that the homeomorphism depends upon the choice of generators. Figure 2 shows the cone C and the irrational affine toric variety $Y_{(a,b,c)}$. \hfill \diamond

In Lemma 3.2 and in the proof of Lemma 3.4, faces F of the cone C correspond to monoid homomorphisms φ that vanish on $C \setminus F$ and are nonzero on F. For a face F of C, let $\langle F \rangle$ be its linear span. Recall that $\text{Hom}_c(\langle F \rangle, \mathbb{R}_\geq) = \text{Hom}_c(\langle F \rangle, \mathbb{R}_\geq)$, which is a single T_N-orbit isomorphic to T_N/T_{F^\perp}, where $F^\perp \subset N$ is the annihilator of F. Write $\varepsilon_F \in \text{Hom}_c(\langle F \rangle, \mathbb{R}_\geq)$ for the constant homomorphism, $\varepsilon_F(u) = 1$ for all $u \in \langle F \rangle$. Then $\text{Hom}_c(\langle F \rangle, \mathbb{R}_\geq) = T_N.\varepsilon_F$. Restriction to F followed by extension by 0 to the rest of C gives a
Figure 2. Cone and irrational affine toric variety.

T_N-equivariant map $\text{Hom}_c(\langle F \rangle, \mathbb{R}_>) \to \text{Hom}_c(C, \mathbb{R}_>)$ which sends the constant map ε_F to the element of $\text{Hom}_c(C, \mathbb{R}_>)$ (still written ε_F) whose value at $u \in C$ is

$$
\varepsilon_F(u) = \begin{cases}
1 & u \in F \\
0 & u \in C \setminus F
\end{cases}
$$

Set $O_F := T_N \cdot \varepsilon_F \subset \text{Hom}_c(C, \mathbb{R}_>)$, the orbit through ε_F, which is the image of $\text{Hom}_c(\langle F \rangle, \mathbb{R}_>)$.

Corollary 3.6. For any face F of C, O_F consists of those homomorphisms in $\text{Hom}_c(C, \mathbb{R}_>)$ that vanish on $C \setminus F$ and are nonzero on F. The map $\text{Hom}_c(\langle F \rangle, \mathbb{R}_>) \to \text{Hom}_c(C, \mathbb{R}_>)$ is an inclusion with image O_F, and we have the orbit decomposition

$$
\text{Hom}_c(C, \mathbb{R}_+) = \bigsqcup_{F \text{ a face of } C} O_F.
$$

Proof. By definition of the map $\text{Hom}_c(\langle F \rangle, \mathbb{R}_>) \to \text{Hom}_c(C, \mathbb{R}_>)$, its image consists of homomorphisms that vanish on $C \setminus F$ and are nonzero on F. Suppose that $\varphi \in \text{Hom}_c(C, \mathbb{R}_>)$ vanishes on $C \setminus F$ and is nonzero on F. If we restrict φ to F, it is a monoid homomorphism from F to the group \mathbb{R}_+ and therefore has a unique extension to $\langle F \rangle$. Thus φ lies in the image of the map $\text{Hom}_c(\langle F \rangle, \mathbb{R}_+) \to \text{Hom}_c(C, \mathbb{R}_+)$, proving the first assertion. The map is an injection, as an element of $\text{Hom}_c(\langle F \rangle, \mathbb{R}_+)$ is determined by its restriction to F.

Finally, the decomposition (6) follows from (3) and Lemma 3.4. \square

Let v be an element of $C' \subset N$ that exposes the face F of C, that is, $v^\perp \cap C = F$ and for $u \in C \setminus F$, $u \cdot v > 0$. For $s \in \mathbb{R}$, we have the element $\gamma_{sv} \in T_N$ whose value at $u \in M$ is $\gamma_{sv}(u) = \exp(-su \cdot v)$. The map $\mathbb{R} \to T_N$ defined by $s \mapsto \gamma_{sv}$ is a one-parameter subgroup of T_N. Recall that ε_C is the constant map on C, taking the value 1 at every point $u \in C$.

Lemma 3.7. With these definitions, we have

1. $\varepsilon_F = \lim_{s \to \infty} \gamma_{sv} \cdot \varepsilon_C$.
2. If F is a face of E and both are faces of C, then $\varepsilon_F = \lim_{s \to \infty} \gamma_{sv} \cdot \varepsilon_E$.

Proof. If $\gamma_{sv} \cdot \varepsilon_C$ has a limit as $s \to \infty$ in $\text{Hom}_c(C, \mathbb{R}_+)$, then its value at $u \in C$ is

$$
\lim_{s \to \infty} (\gamma_{sv} \cdot \varepsilon_C)(u) = \lim_{s \to \infty} \gamma_{sv}(u) \varepsilon_C(u) = \lim_{s \to \infty} \exp(-su \cdot v) = \begin{cases}
0 & u \notin F \\
1 & u \in F
\end{cases}
$$
which is ε_F. (We are using that $\varepsilon_C(u) = 1$.) The last equality is because as $v \in C^\vee$, $u \cdot v$ is nonnegative and the limit equals zero when $u \cdot v \neq 0$ and it equals 1 when $u \cdot v = 0$. This proves (1). Nearly the same argument proves (2). \hfill \Box

By Lemma 3.7(1), $\varepsilon_F \in \overline{O}_C$. As $O_F = T_N \cdot \varepsilon_F$, we deduce the following.

Corollary 3.8. If $F \subset E$ are faces of the cone C, then $O_F \subset \overline{O}_E$. In particular, O_C is dense in $\text{Hom}_c(C, \mathbb{R}_\geq)$, and if E is a face of C, then

$$\overline{O}_E = \bigcup_{F \text{ a face of } E} O_F.$$

3.2. Irrational toric varieties from fans. Let $\Sigma \subset \mathbb{N}$ be a fan. For a cone $\sigma \in \Sigma$, define $V_\sigma := \text{Hom}_c(\sigma^\vee, \mathbb{R}_\geq)$, the irrational affine toric variety as in § 3.1 associated to the dual cone σ^\vee of σ. Suppose that τ is a face of σ. Then the inclusion $\sigma^\vee \subset \tau^\vee$ induces a map $V_\tau \rightarrow V_\sigma$ by restricting a monoid homomorphism on τ^\vee to σ^\vee.

Lemma 3.9. The map $V_\tau \rightarrow V_\sigma$ is a T_N-equivariant inclusion.

Proof. By the definition (4) of the T_N-action on $\text{Hom}_c(\sigma^\vee, \mathbb{R}_\geq)$, the restriction map is equivariant. It is injective because a monoid homomorphism $\varphi \in \text{Hom}_c(\tau^\vee, \mathbb{R}_\geq)$ is determined by its restriction to σ^\vee. Indeed, let $\varphi \in \text{Hom}_c(\tau^\vee, \mathbb{R}_\geq)$ and $w \in \tau^\vee$. By Proposition 1.1, there are $u, \ell \in \sigma^\vee$ with $\ell \in \tau^\perp$ such that $w = u - \ell$. Since $\tau^\perp \subset \tau^\vee$ is a linear space, $\varphi(\ell) \neq 0$ and $\varphi(w) = \varphi(u)\varphi(\ell)^{-1}$. \hfill \Box

Example 3.10. Let $\sigma = \text{cone}\{(1, \sqrt{2}), (0, 1)\} \subset \mathbb{R}^2$, and let τ be its face generated by $(0, 1)$. Then σ^\vee is the cone C of Example 3.5 and $\tau^\vee = \{(x, y) \in \mathbb{R}^2 \mid y \geq 0\} = \mathbb{R} \times \mathbb{R}_\geq$. The points $a = (-\sqrt{2}, 1), b = (1, 0), c = (1, 1)$ lie in both dual cones σ^\vee and τ^\vee, and τ^\vee has an additional generator $d := (-1, 0)$. Figure 3 displays the cones σ and τ, their duals, and the associated irrational affine toric varieties $Y_{\{a,b,c\}} \simeq V_\sigma$ and $Y_{\{a,b,d\}} \simeq V_\tau$. The inclusion $V_\tau \hookrightarrow V_\sigma$ is induced by projecting $Y_{\{a,b,d\}}$ to the quadrant $\mathbb{R}_\geq^{\{a,b\}}$ and then applying the inverse of the projection from $Y_{\{a,b,c\}}$. The image of $Y_{\{a,b,d\}}$ in $Y_{\{a,b,c\}}$ only omits the a-axis. \hfill \Diamond

![Figure 3. Cones, their duals, and associated irrational affine toric varieties.](image-url)
The irrational toric variety Y_Σ associated to a fan $\Sigma \subset N$ is
\begin{equation}
Y_\Sigma := \bigcup_{\sigma \in \Sigma} V_\sigma = \bigcup_{\sigma \in \Sigma} \text{Hom}_c(\sigma^\vee, \mathbb{R}_\geq) ,
\end{equation}
the union of the irrational affine toric varieties V_σ for $\sigma \in \Sigma$ glued together along the inclusions $V_\tau \to V_\sigma$ for τ a face of σ. For each cone $\sigma \in \Sigma$, let $x_\sigma \in V_\sigma$ be the distinguished point $\varepsilon_{\sigma^\perp}$, where $\sigma^\perp \subset \sigma^\vee$ is its lineality space. We also let U_σ be the T_N-orbit through x_σ, so that $U_\sigma = O_{\sigma^\perp}$, in the notation of Subsection 3.1. Note also that $U_\sigma \cong N/\langle \sigma \rangle$.

Theorem 3.11. For any fan $\Sigma \subset N$, the irrational toric variety Y_Σ is a T_N-equivariant cell complex. Each cell is an orbit and corresponds to a unique cone $\sigma \in \Sigma$. The cell corresponding to the cone σ is $U_\sigma \cong N/\langle \sigma \rangle$ and $\tau \subset \sigma$ if and only if $U_\tau \subset U_\sigma$, so that the cell structure of Y_Σ and its poset of containment-in-closure is dual to that of the fan Σ.

Proof. For each cone $\sigma \in \Sigma$, the set V_σ is a T_N-equivariant cell complex whose cells are T_N-orbits that correspond to the faces τ of σ where the orbit U_τ corresponding to τ is identified with $N/\langle \tau \rangle$. By Corollary 3.8, the cell U_σ lies in the closure of any cell U_τ for $\tau \subset \sigma$. Because Y_Σ is obtained by identifying the sets V_σ along common open subsets, these same facts hold for Y_Σ. The last statement is a consequence of the previous statements. \hfill \square

Corollary 3.12. The collection $\{V_\sigma \mid \sigma \in \Sigma\}$ of irrational affine toric varieties forms a T_N-equivariant open cover of Y_Σ by irrational affine toric varieties.

Proof. Since Y_Σ is the union of the irrational affine toric varieties V_σ, which are T_N-equivariant as is the gluing, we only need to show that each V_σ is open in Y_Σ. By Theorem 3.11,
\[
Y_\Sigma \setminus V_\sigma = \bigcup_{\tau \nsubseteq \sigma} U_\tau = \bigcup_{\tau \nsubseteq \sigma} \overline{U}_\tau ,
\]
as $\tau \subset \rho$ with $\tau \nsubseteq \sigma$ implies that $\rho \nsubseteq \sigma$. Thus $Y_\Sigma \setminus V_\sigma$ is closed. \hfill \square

For a fan $\Sigma \subset N$ and a cone $\sigma \in \Sigma$, the **star** of σ in Σ is the fan in N
\[
\text{star}(\sigma) := \{ \langle \sigma \rangle + \tau \mid \tau \in \Sigma \text{ and } \sigma \text{ is a face of } \tau \} .
\]
By Theorem 3.11, an orbit U_σ lies in the closure of an orbit U_τ if and only if σ is a face of τ. The following corollary is a consequence of these facts and the definition of star.

Corollary 3.13. For any cone $\sigma \in \Sigma$, the closure of the orbit U_σ is the toric variety $Y_{\text{star}(\sigma)}$.

Lastly, if Σ is rational, then Y_Σ is the nonnegative part of the classical toric variety X_Σ.

Theorem 3.14. If $\Sigma \subset N$ is a rational fan, then $Y_\Sigma = X_\Sigma(\mathbb{R}_\geq)$.

Proof. Because both Y_Σ and $X_\Sigma(\mathbb{R}_\geq)$ are constructed by the same gluing procedure from the sets $V_\sigma = \text{Hom}_c(\sigma^\vee, \mathbb{R}_\geq)$ and $\text{Hom}_\text{mon}(S_\sigma, \mathbb{R}_\geq)$ for the cones $\sigma \in \Sigma$, it suffices to show that these two sets are equal. (Recall that $S_\sigma = \sigma^\vee \cap M_\mathbb{Z}$.) Let $\sigma \subset M$ be a rational cone. Then σ^\vee is generated as a cone by the monoid S_σ, so that restricting a map from σ^\vee to S_σ is an injection $V_\sigma \hookrightarrow \text{Hom}_\text{mon}(S_\sigma, \mathbb{R}_\geq)$. Let $\mathcal{A} \subset S_\sigma$ be a generating set for σ^\vee. The map $f_{\mathcal{A}}$ of Lemma 3.4 maps both V_σ and $\text{Hom}_\text{mon}(S_\sigma, \mathbb{R}_\geq)$ to $Y_\mathcal{A}$, with both maps isomorphisms. Thus the restriction map identifies V_σ with $\text{Hom}_\text{mon}(S_\sigma, \mathbb{R}_\geq)$, which completes the proof. \hfill \square
3.3. Maps of fans. Let $\Sigma \subset N$ and $\Sigma' \subset N'$ be fans in possibly different vector spaces N and N'. Let Y_Σ and $Y_{\Sigma'}$ be the associated irrational toric varieties. A map $\psi: Y_\Sigma \to Y_{\Sigma'}$ of irrational toric varieties is a continuous map $\psi: Y_\Sigma \to Y_{\Sigma'}$ together with a homomorphism $\Psi: T_N \to T_{N'}$ of topological groups such that the following diagram commutes.

\[
\begin{array}{ccc}
T_N \times Y_\Sigma & \xrightarrow{\mu} & Y_\Sigma \\
\Psi \times \psi \downarrow & & \downarrow \psi \\
T_{N'} \times Y_{\Sigma'} & \xrightarrow{\mu} & Y_{\Sigma'}
\end{array}
\]

(The horizontal maps μ are the action, $\mu(t, y) = t.y$.) A map of fans, $\Psi: \Sigma \to \Sigma'$, is a linear map $\Psi: N \to N'$ such that for each cone $\sigma \in \Sigma$, there is a cone $\sigma' \in \Sigma'$ with $\Psi(\sigma) \subset \sigma'$.

Theorem 3.15. The association $\Sigma \mapsto Y_\Sigma$ is functorial for maps of fans. That is, if $\Psi: \Sigma \to \Sigma'$ is a map of fans with $\Sigma \subset N$ and $\Sigma' \subset N'$, then there is a continuous map $\psi: Y_\Sigma \to Y_{\Sigma'}$ such that the diagram (8) commutes, where the homomorphism $\Psi: T_N \to T_{N'}$ is induced by the linear map $\Psi: N \to N'$.

Proof. Let $\Psi: \Sigma \to \Sigma'$ be a map of fans, where $\Sigma \subset N$ and $\Sigma' \subset N'$ are fans. The linear map $\Psi: N \to N'$ induces a homomorphism $\Psi: T_N \to T_{N'}$ of topological groups. We construct a map $\psi: Y_\Sigma \to Y_{\Sigma'}$ so that the diagram (8) commutes, by defining ψ on each irrational affine toric variety V_σ for σ a cone of Σ.

Let $\sigma \in \Sigma$ be a cone. Since $\psi: \Sigma \to \Sigma'$ is a map of fans, there is a cone $\sigma' \in \Sigma$ with $\Psi(\sigma) \subset \sigma'$. Let $\Psi^*: M' \to M$ be the map adjoint to Ψ, where M and M' are the vector spaces dual to N and N' respectively. As $\Psi(\sigma) \subset \sigma'$, we have $\Psi^*((\sigma')^\vee) \subset \sigma^\vee$. Since these are polyhedral cones and Ψ^* is linear, for any face F of σ^\vee, its inverse image F' in $(\sigma')^\vee$ is a face, and the same is true for the complement $\sigma^\vee \setminus F$ of a face F of σ^\vee.

For $\varphi \in V_\sigma = \text{Hom}_c(\sigma^\vee, \mathbb{R}_\geq)$, the composition $\psi(\varphi) := \varphi \circ \Psi^*$ is a monoid homomorphism $(\sigma')^\vee \to \mathbb{R}_\geq$. By the previous remark, the inverse image of the support $\text{supp}(\varphi)$ of φ is the support of $\psi(\varphi)$, and $\psi(\varphi)$ is continuous on its support.

Thus ψ maps V_σ to $V_{\sigma'}$. This map is continuous as the topology is defined by point evaluation. It is also equivariant in the sense of (8). Noting that it is compatible with the gluing (7) completes the proof. \qed

4. Global Properties of Irrational Toric Varieties

We show that an irrational toric variety forms a monoid, that the fan Σ is determined from limits in Y_Σ and thus that Y_Σ is a compact topological space if and only if the fan Σ is complete. We also show that if Σ is the normal fan to a polytope, then Y_Σ has an equivariant embedding into a simplex and is homeomorphic to that polytope.

4.1. Irrational toric varieties as monoids. A topological monoid is a monoid that is a topological space whose operation \bullet, called product, is continuous. The affine irrational toric varieties Y_A and $\text{Hom}_c(C, \mathbb{R}_\geq)$ are topological monoids whose structures are compatible with the isomorphism of Lemma 3.4. These monoids contain a dense torus which acts on them with finitely many orbits, and are thus irrational analogs of linear algebraic monoids [28, 29]. If we adjoin an absorbing element 0 to an irrational toric variety Y_Σ, we obtain a commutative
Let $C \subset M$ be a polyhedral cone. For $x, y \in \text{Hom}_c(C, \mathbb{R}_>)$, define $x \cdot y: C \to \mathbb{R}_>$ by $(x \cdot y)(u) = x(u)y(u)$, for $u \in C$. Let $\Phi(C)$ be the set of faces of C. For faces $F, G \in \Phi(C)$, define $F \cdot G := F \cap G$. Note that $x \mapsto \text{supp}(x)$ is map $\text{Hom}_c(C, \mathbb{R}_>) \to \Phi(C)$.

Proposition 4.1. $\text{Hom}_c(C, \mathbb{R}_>)$ is a topological monoid, $\Phi(C)$ is a monoid, and $x \mapsto \text{supp}(x)$ is a homomorphism of monoids. The identity of $\text{Hom}_c(C, \mathbb{R}_>)$ is the constant map ε_C and if the lineality space L of C is the origin, then $\text{Hom}_c(C, \mathbb{R}_>)$ has an absorbing element ε_0. The identity of $\Phi(C)$ is C itself, and L is its absorbing element.

For any $u \in C$, the evaluation map $x \mapsto x(u)$ is a homomorphism of topological monoids $\text{Hom}_c(C, \mathbb{R}_>) \to \mathbb{R}_>$. For any linear map $f: M' \to M$ and cone $C' \subset M'$ with $f(C') \subset C$, the pullback map $f^*: \text{Hom}_c(C', \mathbb{R}_>) \to \text{Hom}_c(C, \mathbb{R}_>)$ is a homomorphism of topological monoids.

Proof. Let $x, y \in \text{Hom}_c(C, \mathbb{R}_>)$. As x and y are monoid homomorphisms, $x \cdot y$ is a monoid homomorphism. Also as $\text{supp}(x \cdot y) = \text{supp}(x) \cap \text{supp}(y)$ is a face of C and elements of $\text{Hom}_c(C, \mathbb{R}_>)$ are monoid homomorphisms that are continuous on their support, we conclude that $x \cdot y \in \text{Hom}_c(C, \mathbb{R}_>)$. This product is commutative. As it is defined pointwise, it is continuous, and so $\text{Hom}_c(C, \mathbb{R}_>)$ is a commutative topological monoid. The other assertions are straightforward. \hfill \square

Let $A \subset M$ be finite. The orthant \mathbb{R}_A^A is a monoid under the Hadamard product; for $x, y \in \mathbb{R}_A^A$ and $a \in A$, set $(x \cdot y)_a := x_ay_a$. Then the injective map $f_A: \text{Hom}_c(\text{cone}(A), \mathbb{R}_>) \to \mathbb{R}_A^A$ of Lemma 3.4 is a homomorphism of topological monoids whose image is Y_A.

Let $\Sigma \subset N$ be a fan. For a cone $\sigma \in \Sigma$, the irrational affine toric variety V_σ is a monoid under pointwise multiplication and when $\tau \subset \sigma$ is a face, the inclusion $V_\tau \subset V_\sigma$ is a monoid homomorphism. We define a product \cdot on $Y_\Sigma^+ := Y_\Sigma \sqcup \{0\}$, where 0 is an isolated point that acts as an absorbing element. Let $x, y \in Y_\Sigma^+$,

1. If either x or y is 0, then $x \cdot y = 0$.
2. If there is a cone $\sigma \in \Sigma$ with $x, y \in V_\sigma$, then $x \cdot y$ is their product in V_σ.
3. If there is no cone $\sigma \in \Sigma$ with $x, y \in V_\sigma$, then $x \cdot y = 0$. (This includes case (1).)

Intersection of cones defines a monoid structure on Σ. More interesting is the product on $\Sigma^+ := \Sigma \sqcup \{0\}$, where 0 is a new point that acts as an absorbing element, in which $\sigma \cdot \tau$ is defined to be the smallest cone containing both σ and τ if such a cone exists, and 0 otherwise.

Theorem 4.2. For a fan $\Sigma \subset N$, Y_Σ^+ is a commutative topological monoid with the inclusion $V_\sigma \hookrightarrow Y_\Sigma \subset Y_\Sigma^+$ a homomorphism of topological monoids, for every $\sigma \in \Sigma$. For a map $\Psi: \Sigma \to \Sigma'$ of fans the functorial map $\psi: Y_\Sigma^+ \to Y_{\Sigma'}^+$ of irrational toric varieties is a homomorphism of topological monoids. Finally, the map $Y_\Sigma^+ \to \Sigma^+$ that sends an element x to the cone $\sigma \in \Sigma$ where $x \in U_\sigma$ or to 0 when $x = 0$ is a homomorphism of monoids.

This may be proven using arguments similar to those of Proposition 4.1, which we omit.

4.2. Recovering the fan.

Before establishing our results on compact and projective irrational toric varieties, we study certain limits in an irrational toric variety Y_Σ and show that the fan Σ may be recovered from these limits.
Let \(\Sigma \subset N \) be a fan. Let \(\varepsilon \) be the distinguished point in the dense orbit of \(T_N \) on \(Y_\Sigma \). In every affine patch \(V_\sigma \) for \(\sigma \in \Sigma \), this restricts to the constant homomorphism. If \(L \) is the minimal cone of \(\Sigma \) (its lineality space), then \(\varepsilon = x_L \); our notation avoids \(L \). We study limits of \(\varepsilon \) in \(Y_\Sigma \) under one-parameter subgroups \(\gamma_{sv} \) of \(T_N \), giving a global version of Lemma 3.7.

Lemma 4.3. Let \(v \in N \). Then the family of translates \(\gamma_{sv, \varepsilon} \) for \(s \in \mathbb{R} \) has a limit in \(Y_\Sigma \) as \(s \to \infty \) if and only if there is a cone \(\sigma \in \Sigma \) with \(v \in \sigma \). When this limit exists, it equals \(x_\tau \), where \(\tau \) is the minimal cone of \(\Sigma \) that contains \(v \), so that \(v \in \tau^0 \).

Proof. For \(u \in M \) and \(s \in \mathbb{R} \), we have \((\gamma_{sv, \varepsilon})(u) = \exp(-su \cdot v) \), as \(\varepsilon(u) = 1 \). Thus

\[
\lim_{s \to \infty} (\gamma_{sv, \varepsilon})(u) = \begin{cases} 0 & \text{if } u \cdot v > 0 \\ 1 & \text{if } u \cdot v = 0 \\ \infty & \text{if } u \cdot v < 0 \end{cases}
\]

If there is a cone \(\sigma \in \Sigma \) with \(v \in \sigma \), then by (9) \((\gamma_{sv, \varepsilon})(u) \) has a limit as \(s \to \infty \) for all \(u \in \sigma^\vee \), and so the family \(\gamma_{sv, \varepsilon} \) has a limit as \(s \to \infty \) in the affine toric variety \(V_\sigma \). (This is Lemma 3.7.) Conversely, if \(\gamma_{sv, \varepsilon} \) has a limit in \(Y_\Sigma \) as \(s \to \infty \), then there is an affine irrational toric variety \(V_\sigma \) for some \(\sigma \in \Sigma \) in which it has a limit. Then for all \(u \in \sigma^\vee \), the family of real numbers \((\gamma_{sv, \varepsilon})(u) \) has a limit, which implies that \(v \in \sigma \).

The assertion identifying the limit is a consequence of the definition of \(x_\tau \) and of (9). □

Let \(\Sigma \subset N \) be a fan. Let \(|\Sigma| \subset N \) be the set of \(v \in N \) such that \(\gamma_{sv, \varepsilon} \) has a limit in \(Y_\Sigma \) as \(s \to \infty \). We define an equivalence relation on \(|\Sigma| \). For \(v, w \in |\Sigma| \) we declare

\[v \sim w \text{ if and only if } \lim_{s \to \infty} \gamma_{sv, \varepsilon} = \lim_{s \to \infty} \gamma_{sw, \varepsilon}. \]

By Lemma 4.3, the set \(|\Sigma| \) is the support of the fan \(\Sigma \) and the equivalence classes are the relative interiors of cones of \(\Sigma \). In fact, a cone \(\sigma \in \Sigma \) is the closure of the set of \(u \in |\Sigma| \) such that \(\lim_{s \to \infty} \gamma_{sv, \varepsilon} = x_\sigma \). Since these limits commute with the action of the torus \(T_N \), we may replace \(\varepsilon \) in the definition of \(\sim \) by any point \(y \) in the dense orbit of \(Y_\Sigma \). Similarly, we may identify the cone \(\sigma \) as the closure of the set of \(u \in |\Sigma| \) such that for any \(y \) in the dense orbit of \(Y_\Sigma \), \(\lim_{s \to \infty} \gamma_{sv, y} \in U_\sigma \). We summarize this discussion.

Corollary 4.4. The fan \(\Sigma \subset N \) may be recovered from the irrational toric variety \(Y_\Sigma \) using limits under translation by one-parameter subgroups \(\gamma_{sv} \) of elements \(y \) in the dense orbit.

4.3. Compact irrational toric varieties.

A classical toric variety \(X_\Sigma \) is a proper scheme over \(\text{spec} \mathbb{Z} \) if and only if the rational fan \(\Sigma \) is complete (every point of \(N \) lies in some cone of \(\Sigma \), so that \(N = |\Sigma| \)). The analogous result holds for an irrational toric variety \(Y_\Sigma \).

Theorem 4.5. Let \(\Sigma \subset N \) be a fan. The irrational toric variety \(Y_\Sigma \) is a compact topological space if and only if the fan \(\Sigma \) is complete.

Proof. Suppose that \(Y_\Sigma \) is compact. Recall the definitions and notation preceding Lemma 4.3. As \(Y_\Sigma \) is compact, for every \(v \in N \), the family \(\gamma_{sv, \varepsilon} \) has a limit in \(Y_\Sigma \) as \(s \to \infty \). By Lemma 4.3, there is some cone \(\sigma \) of \(\Sigma \) with \(v \in \sigma \), which implies that \(\Sigma \) is a complete fan.

Suppose now that the fan \(\Sigma \) is complete. We prove that \(Y_\Sigma \) is compact by showing that every sequence \(\{y_n \mid n \in \mathbb{N}\} \subset Y_\Sigma \) has a subsequence that converges in \(Y_\Sigma \). To that end,
we will replace \(\{y_n \mid n \in \mathbb{N}\} \) by a subsequence with desirable properties several times. By Theorem 3.11, \(Y_\Sigma \) is a disjoint union of finitely many orbits of \(\mathbb{R}_n^n \), one orbit \(U_\sigma \) for each cone \(\sigma \) of \(\Sigma \). Thus there is some orbit \(U_\sigma \) whose intersection with \(\{y_n \mid n \in \mathbb{N}\} \) is infinite. Replacing \(\{y_n \mid n \in \mathbb{N}\} \) by a subsequence, we may assume that \(\{y_n \mid n \in \mathbb{N}\} \subseteq U_\sigma \). By Corollary 3.13, \(U_\sigma = Y_{\text{star}(\sigma)} \). By its construction, if \(\Sigma \) is complete, then \(\text{star}(\sigma) \) is also complete. Replacing \(Y_\Sigma \) by \(Y_{\text{star}(\sigma)} \), we may assume that \(\{y_n \mid n \in \mathbb{N}\} \) lies in the dense orbit of \(Y_{\Sigma} \).

The dense orbit of \(Y_{\Sigma} \) is parameterized by \(N \) under the map \(v \mapsto \gamma_v, \varepsilon \). For each \(n \in \mathbb{N} \), choose a point \(v_n \in N \) such that \(y_n = \gamma_{v_n}, \varepsilon \). This gives a sequence \(\{v_n \mid n \in \mathbb{N}\} \subseteq N \). Since \(\Sigma \) is complete, \(N \) is the finite disjoint union of the relative interiors \(\sigma^o \) of cones \(\sigma \) of \(\Sigma \). There is some cone \(\sigma \) such that \(\sigma^o \cap \{v_n \mid n \in \mathbb{N}\} \) is infinite. Replacing \(\{v_n \mid n \in \mathbb{N}\} \) by its intersection with \(\sigma^o \), we may assume that \(\{v_n \mid n \in \mathbb{N}\} \subseteq \sigma^o \).

For a face \(\tau \) of \(\sigma \), we say that \(\{v_n \mid n \in \mathbb{N}\} \) is \(\tau \)-bounded if its image in the quotient \(N/\langle \tau \rangle \) has a bounded subsequence. By [26, Lem. 1.3], the set of faces \(\tau \) of \(\sigma \) for which \(\{v_n \mid n \in \mathbb{N}\} \) is \(\tau \)-bounded forms an order ideal. Let \(\tau \) be a minimal face of \(\sigma \) for which \(\{v_n \mid n \in \mathbb{N}\} \) is \(\tau \)-bounded. Replace \(\{v_n \mid n \in \mathbb{N}\} \) by a subsequence whose image in \(N/\langle \tau \rangle \) is bounded. As in [26, Ex. 4.1], there is a bounded set \(B \subset \sigma \subset N \) such that \(\{v_n \mid n \in \mathbb{N}\} \subset B + \tau \), and thus there are sequences \(\{b_n \mid n \in \mathbb{N}\} \subseteq B \) and \(\{c_n \mid n \in \mathbb{N}\} \subseteq \tau \) with \(v_n = b_n + c_n \). Since \(\{b_n \mid n \in \mathbb{N}\} \) is bounded, we may further pass to a convergent subsequence with limit \(b \in \sigma \).

Replacing all sequences by their corresponding subsequences, we claim that in \(V_\tau \),

\[
\lim_{n \to \infty} y_n = \gamma_{b \cdot x_\tau} \in U_\tau,
\]

which will complete the proof.

Consider the sequence \(\{y_n \mid n \in \mathbb{N}\} \) as a subset of \(V_\tau = \text{Hom}_c(\tau^\vee, \mathbb{R}_\geq) \). For \(u \in \tau^\vee \), the proof of Lemma 4.3 shows that \(y_n(u) = \exp(-u \cdot v_n) \), as \(y_n = \gamma_{v_n}, \varepsilon \). Since \(v_n = b_n + c_n \),

\[
y_n(u) = \exp(-u \cdot v_n) = \exp(-u \cdot b_n) \cdot \exp(-u \cdot c_n).
\]

If \(u \in \tau^\perp \), then \(u \cdot c_n = 0 \), so that

\[
\lim_{n \to \infty} y_n(u) = \lim_{n \to \infty} \exp(-u \cdot b_n) = \exp(-u \cdot b).
\]

If \(u \in \tau^\vee \setminus \tau^\perp \), then \(u \) exposes a proper face of \(\tau \), and the minimality of \(\tau \) implies that \(u \cdot v_n \) has no bounded subsequence. But then \(u \cdot c_n \) has no bounded subsequence. Since \(u \cdot c_n \geq 0 \), we conclude that \(u \cdot c_n \) has limit \(+\infty \) as \(n \to \infty \). Thus

\[
\lim_{n \to \infty} y_n(u) = \lim_{n \to \infty} \exp(-u \cdot v_n) = 0.
\]

These calculations together establish (10), and complete the proof.

4.4. Projective irrational toric varieties. The analog of projective space for irrational toric varieties is the standard simplex

\[
\Delta^n := \left\{ (u_0, u_1, \ldots, u_n) \in \mathbb{R}_{\geq}^{n+1} \mid \sum u_i = 1 \right\}.
\]

As any ray in the orthant \(\mathbb{R}_n^n \) meets \(\Delta^n \) in a unique point, we may identify \(\Delta^n \) with the set of rays. This implies that \(\Delta^n = (\mathbb{R}_{\geq}^{n+1} \setminus \{0\})/\mathbb{R}_\geq \), the quotient under multiplication by positive scalars. As in § 2, it is convenient to write \(\Delta^n A \subseteq \mathbb{R}_\geq^n \), where \(A \subset M \) is finite.
Example 4.6. The simplex has the structure of an irrational toric variety associated to a fan. For this, let \([n] := \{0, 1, \ldots, n\}\) and \(e_0, \ldots, e_n\) be the standard basis for \(\mathbb{R}^n \cong \mathbb{R}^{n+1}\). Letting \(f_0, \ldots, f_n \in \mathbb{R}^n\) be the dual basis, the standard simplex \(\Delta^n \subset \mathbb{R}^n\) is their convex hull, \(\operatorname{conv}\{f_0, \ldots, f_n\}\), which equals the standard simplex \(\Delta^n\) (11). Define a complete fan \(\Sigma_{[n]} \subset \mathbb{R}^n\) with one cone \(\sigma_I\) for each proper subset \(I \subset [n]\) defined by

\[
\sigma_I := \text{cone}\{e_i \mid i \in I\} + \mathbb{R}1,
\]

where \(1 := e_0 + \cdots + e_n\). Note that \(\sigma_\emptyset = \mathbb{R}1\). We have the irrational toric variety \(Y_{\Sigma_{[n]}}\).

The hyperplane \(\{u \in \mathbb{R}^n \mid u \cdot 1 = 0\}\) contains all dual cones \(\sigma_I^\vee\) and is spanned by the differences \(f_i - f_j\) for \(i, j \in [n]\). Set \(V_I := \operatorname{Hom}_c(\sigma_I^\vee, \mathbb{R}_\geq)\). For \(I \subset [n], j \not\in I, \) and \(\varphi \in V_I, \) set

\[
\psi_I(\varphi) = \mathbb{R}_\geq \left(\sum_{i \in [n]} \varphi(f_i - f_j)f_i\right) \cap \Delta^n,
\]

the intersection of the ray through \(\sum_i \varphi(f_i - f_j)f_i\) with the simplex \(\Delta^n\). This injective map does not depend on the choice of \(j \not\in I\) and defines a map \(\psi_I: V_I \to \Delta^n\). These maps \(\psi_I\) are compatible with the gluing in that if \(y \in Y_{\Sigma_{[n]}}\) lies in two affine patches \(V_I\) and \(V_J\), then \(\psi_I(y) = \psi_J(y)\). Thus these maps induce a homeomorphism \(\Psi: Y_{\Sigma_{[n]}} \sim \Delta^n\). (This will be explained in greater generality in the proof of Theorem 4.7.)

The quotient map \(\mathbb{R}^n_{\geq} \setminus \{0\} \to \Delta^n\) may be understood in terms of Theorem 3.15. Let \(\Sigma_{[n]}' \subset \mathbb{R}^n\) be the fan consisting of the boundary of the nonnegative orthant. Its cones are

\[
\sigma_I' := \text{cone}\{e_i \mid i \in I\},
\]

for all proper subsets \(I \subset [n]\). The irrational toric variety \(Y_{\Sigma_{[n]}'}\) is \(\mathbb{R}^{n+1}_{\geq} \setminus \{0\}\), as the orbit consisting of the origin in \(\mathbb{R}^{n+1}_{\geq}\) corresponds to the omitted full-dimensional cone. As \(\sigma_I' \subset \sigma_I\), these inclusions induce a map of fans \(\Psi: \Sigma_{[n]}' \to \Sigma_{[n]}\), and thus a functorial map of toric varieties \(Y_{\Sigma_{[n]}}' \to Y_{\Sigma_{[n]}},\) which is the quotient map \(\mathbb{R}^n_{\geq} \setminus \{0\} \to \Delta^n\).

\[\diamond\]

Suppose that \(A \subset M\) lies on an affine hyperplane in that there is some \(v \in N\) and \(0 \neq r \in \mathbb{R}\) with \(a \cdot v = r\) for all \(a \in A\). Thus for \(t \in T_N\) and \(s \in \mathbb{R},\) we have

\[
\varphi_A(\gamma_{sv}.t) = (\gamma_{sv}(a)t^a \mid a \in A) = \exp(-sr)\varphi_A(t),
\]

as \(\gamma_{sv}(a) = \exp(-sa \cdot v) = \exp(-sr)\) for \(a \in A\) and \(s \in \mathbb{R}\). Consequently, the affine irrational toric variety \(Y_A \subset \mathbb{R}^A\) is a union of rays. Define the \textit{projective irrational toric variety} \(Z_A\) to be the intersection \(Y_A \cap \Delta^A\), equivalently, the quotient \((Y_A \setminus \{0\})/\mathbb{R}_\geq\) under scalar multiplication. This has an action of \(T_N\) with a dense orbit, as the action of \(T_N\) on \(\mathbb{R}^A\) through \(\varphi_A\) gives an action on rays and hence on \(\Delta^A\), which restricts to an action on \(Z_A\).

The restriction of the tautological map \(\pi_A: \mathbb{R}^A \to \text{cone}(A)\) to the simplex \(\Delta^A\) is the canonical parametrization of the convex hull of \(A,\)

\[
\Delta^A \ni u \mapsto \sum_a u_a a \in \text{conv}(A).
\]
By Birch’s Theorem (Proposition 2.3), restricting to the projective toric variety Z_A gives a homeomorphism $\pi_A: Z_A \xrightarrow{\sim} \text{conv}(A)$, called the algebraic moment map \cite{30}. This isomorphism is also essentially proven by Krasauskas \cite{20}.

A polytope $P \subset M$ is a set that is the convex hull, $P = \text{conv}(A)$, of a finite subset $A \subset M$. For any $v \in N$, the subset F of P where the linear function $u \mapsto u \cdot v$ is minimized is the face exposed by v, and every face of P is exposed by some element of N. For example, the polytope P is exposed by the zero vector.

For any $v \in N$, the subset F of P where the linear function $u \mapsto u \cdot v$ is minimized is the face exposed by v, and every face of P is exposed by some element of N. For example, the rightmost fan in Figure 1 is the normal fan of a cube, and the fan $\Sigma[n]$ of Example 4.6 is the normal fan of the standard simplex $\Delta[n]$. Figure 4 shows two views of a polytope and its normal fan.

![Figure 4. Two views of a polytope and its normal fan.](image)

Theorem 4.7. Suppose that $P \subset M$ is a polytope lying on an affine hyperplane with normal fan Σ. For any $A \subset P$ with $\text{conv}(A) = P$, there is an injective map of irrational toric varieties $\Psi_A: Y_\Sigma \to \mathcal{O}^A$ whose image is the projective irrational toric variety Z_A. The map Ψ_A composed with the algebraic moment map π_A is a homeomorphism $Y_\Sigma \xrightarrow{\sim} P$.

When Σ is a rational fan, this is a standard result about the nonnegative part of projective toric varieties, polytopes with integer vertices, and the classical moment map.

Proof. Let $A \subset P$ be a subset with $\text{conv}(A) = P$. For a face F of P, we have $\text{conv}(F \cap A) = F$. An intersection $\mathcal{F} := F \cap A$ for a face F of P a face of A. Cones of the normal fan Σ to P correspond to faces \mathcal{F} of A. For a face \mathcal{F} of A, the corresponding cone in Σ is

$$\sigma_\mathcal{F} = \{ v \in N | f \cdot v \leq a \cdot v \text{ for all } f \in \mathcal{F} \text{ and } a \in A \}.$$

The lineality space of Σ is spanned by those $v \in N$ such that $a \cdot v = b \cdot v$ for any $a, b \in A$.

For a subset $B \subset A$ and any $u \in M$, we define $B - u := \{ b - u \mid b \in B \}$. Duals of cones $\sigma_\mathcal{F}$ lie in the subspace L of M spanned by the differences $\{ b - a \mid a, b \in A \}$, equivalently by $A - a$ for any $a \in A$. For a face \mathcal{F} of A, the cone dual to $\sigma_\mathcal{F}$ is

$$\sigma_\mathcal{F}^\vee = \text{cone}(A - f) + \mathbb{R}(\mathcal{F} - f),$$
for any $f \in \mathcal{F}$. Choosing another $f' \in \mathcal{F}$ translates the points $A-f$ along the lineality space $\mathbb{R}(\mathcal{F}-f)$. Figure 5 shows an example of $\sigma^\vee_{\mathcal{F}}$. The affine toric variety $V_{\mathcal{F}}$ corresponding to a face \mathcal{F} of A is $\text{Hom}_c(\sigma^\vee_{\mathcal{F}}, \mathbb{R}_{\geq})$.

Let $f \in \mathcal{F}$ and consider the map

$$\psi_f : V_{\mathcal{F}} \ni \varphi \longmapsto (\varphi(a-f) \mid a \in A) \in \mathbb{R}^A_{\geq}.$$

Since for $f, f' \in \mathcal{F}, a \in A,$ and $\varphi \in V_{\mathcal{F}},$ we have $\varphi(a-f) = \varphi(f'-f)\varphi(a-f'),$ it follows that $\psi_f(\varphi) = \varphi(f'-f)\psi_{f'}(\varphi)$. That is, the two points $\psi_f(\varphi)$ and $\psi_{f'}(\varphi)$ lie along the same ray in \mathbb{R}^A_{\geq}. Consequently, the map $V_{\mathcal{F}} \to \Delta^\vee A$ defined by

$$\label{eq:12} V_{\mathcal{F}} \ni \varphi \longmapsto (\mathbb{R}_{\geq} \psi_f(\varphi)) \cap \Delta^\vee A \in \Delta^\vee A,$$

is independent of the choice of $f \in \mathcal{F}$. Write $\psi_{\mathcal{F}}$ for the map (12), which is a continuous injection from $V_{\mathcal{F}}$ into $\Delta^\vee A$.

Suppose that \mathcal{F}, \mathcal{G} are faces of A with \mathcal{F} a face of \mathcal{G}. Then $V_{\mathcal{G}} \subset V_{\mathcal{F}},$ and for $\varphi \in V_{\mathcal{G}},$ we have $\psi_{\mathcal{F}}(\varphi) = \psi_{\mathcal{G}}(\varphi),$ as both maps are computed using ψ_f for $f \in \mathcal{F} \subset \mathcal{G}.$ Thus the maps $\psi_{\mathcal{F}}$ for \mathcal{F} a face of A are compatible with the gluing of the $V_{\mathcal{F}}$ to form $Y_{\Sigma},$ and so they induce a continuous map $\Psi_A : Y_{\Sigma} \to \Delta^\vee A$. This is an injection because if $\mathcal{F, G}$ are faces of A that are not faces of each other, then the support of $\varphi \in V_{\mathcal{F}} \setminus V_{\mathcal{G}}$ contains \mathcal{F} and is disjoint from $\mathcal{G} \setminus \mathcal{F}$. Consequently, Ψ_A is injective on the union $V_{\mathcal{F}} \cup V_{\mathcal{G}}$.

We claim that $\Psi_A(Y_{\Sigma}) = Z_A$. Since both are complete, it suffices to show that both contain the same dense subset. Let $t = \gamma_v \in T_N$ with $v \in N$. Since, for $u \in M, t^u = \exp(-u \cdot v),$ we have $\varphi_A(t) = (\exp(-a \cdot v) \mid a \in A).$ This lies on a ray in \mathbb{R}^A_{\geq} that meets $\Delta^\vee A$ in the point

$$\label{eq:13} \left(\mathbb{R}_{\geq} \cdot (\exp(-a \cdot v) \mid a \in A)\right) \cap \Delta^\vee A \in Z_A.$$

The corresponding point $\gamma_v \in Y_{\Sigma}$ lies in $V_A = \text{Hom}_c(L, \mathbb{R}_{\geq}),$ where $L = \mathbb{R}(A-b)$ for any $b \in A$. Its image $\Psi_A(\gamma_v)$ is

$$\left(\mathbb{R}_{\geq} \cdot (\gamma_v(a-b) \mid a \in A)\right) \cap \Delta^\vee A = \left(\mathbb{R}_{\geq} \cdot (\exp(-a \cdot v) \mid a \in A)\right) \cap \Delta^\vee A,$$

as $\varepsilon(a-b) = 1$ and $\gamma_v(a-b) = \exp(-a \cdot v) \exp(b \cdot v),$ so that the two rays are equal. Comparing this to (13) completes the proof.

The restriction that A lie in an affine hyperplane of M may be removed by enlarging N and M by adding a summand of \mathbb{R} to each and placing $A \subset M \oplus \mathbb{R}$ in the copy of M at height 1. That is, as the set of points $\{(a, 1) \mid a \in A\} \subset M \oplus \{1\} \subset M \oplus \mathbb{R}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{A dual cone $\sigma^\vee_{\mathcal{F}}$.}
\end{figure}
5. Hausdorff Limits and the Secondary Polytope

We use the theory developed in the previous sections to establish our main result about the moduli space of limits of translations of an irrational projective toric variety. The set closed(X) of closed subsets of a compact metric space X is itself a compact metric space. The Hausdorff distance between $Y,Z \in \text{closed}(X)$ is

$$d_H(Y,Z) := \max\left\{\max_{y \in Y} \min_{z \in Z} d(y,z), \max_{z \in Z} \min_{y \in Y} d(y,z)\right\},$$

where $d(\bullet,\bullet)$ is the metric on X [23, p. 279].

Suppose that $A \subset M$ lies on an affine hyperplane so that the irrational affine toric variety $Y_A \subset \mathbb{R}^A_\mathbb{A}$ is a union of rays with associated irrational projective toric variety $Z_A = Y_A \cap \Delta^A$. The positive torus $\mathbb{R}^A_\mathbb{R}$ acts linearly on the orthant \mathbb{R}^A_\geq by scaling each coordinate,

$$w.x = w.(x_a \mid a \in A) = (w.a.x_a \mid a \in A),$$

for $w \in \mathbb{R}^A_\geq$ and $x \in \mathbb{R}^A_\geq$. This induces an action of \mathbb{R}^A_\geq on rays, and hence on Δ^A.

For $w \in \mathbb{R}^A_\geq$, the translate $w.Z_A$ is a closed subset of Δ^A defined by binomials similar to those defining Y_A of Proposition 2.2 (the actual binomials are described in [13, Prop. A2]). The association $w \mapsto w.Z_A$ gives a continuous map $\mathbb{R}^A_\geq \rightarrow \text{closed}(\Delta^A)$. Let Δ_A be the closure of that image. This is a compact Hausdorff space equipped with an action of \mathbb{R}^A_\geq, and it consists of all Hausdorff limits of translates of Z_A. The main result of [26] was a set-theoretic identification of the points of Δ_A. We extend that to construct a homeomorphism between Δ_A and the irrational toric variety associated to the secondary fan of A. This fan is normal to the secondary polytope of A, so Theorem 4.7 identifies Δ_A with the secondary polytope. This extends the observation of [13] which adapted the results of [17, 18] to prove this statement when $A \subset M_\mathbb{R}$ is integral.

We define the secondary fan and secondary polytope of A, which were introduced in [14] (see also [9]). For $\lambda \in \mathbb{R}^A$, let $Q_\lambda \subset M \oplus \mathbb{R}$ be the convex hull of the lifted points

$$Q_\lambda := \text{conv}\{(a, \lambda_a) \in M \oplus \mathbb{R} \mid a \in A\}.$$}

A lower face of Q_λ is a face with an inward-pointing normal vector whose last coordinate is positive. We define a system $S(\lambda)$ of subsets of A. A subset $F \subset A$ is an element of $S(\lambda)$ if there is a lower face F of Q_λ such that

$$F = \{a \in A \mid (a, \lambda_a) \in F\}. $$

A system S of subsets is a regular subdivision of A if $S = S(\lambda)$ for some $\lambda \in \mathbb{R}^A$. Elements F of a regular subdivision S are its faces. Figure 6 shows four regular subdivisions of a set $\{a,b,c,d,e\}$ of points in the plane, including the lower faces of the lifted polytope Q_λ. We list the facets (maximal elements) of each subdivision. The first on the left has two facets, $\{a,b,c,d\}$ and $\{b,c,d,e\}$, as the lift of the point c is collinear with the lifts of b and d. The point c is lifted above the lower hull in the second and does not participate in this regular subdivision, whose facets are $\{a,b,d\}$ and $\{b,d,e\}$. The third has four facets, $\{a,b,c\}$, $\{a,c,d\}$, $\{b,c,e\}$, and $\{c,d,e\}$. The fourth has one facet $\{a,b,d,e\}$, as their lifts are coplanar and the point c is again lifted above the lower hull.
Two elements \(\lambda, \mu \in \mathbb{R}^A \) are equivalent if they induce the same regular subdivision of \(A \), \(S(\lambda) = S(\mu) \). An equivalence class is defined by finitely many linear equations and linear inequalities, and so the closure of each equivalence class is a polyhedral cone. These cones fit together to form the secondary fan \(\Sigma(A) \) of the point configuration \(A \).

A face \(F \in S(\lambda) \) corresponds to a lower face \(F \) of the lifted polytope \(Q_\lambda \), with \(F = \text{conv}\{ (f, \lambda f) \mid f \in F \} \). The projections of the lower faces of \(Q_\lambda \) to \(M \) form a regular polyhedral subdivision of \(\text{conv}(A) \) whose polytopes are \(\text{conv}(F) \) for \(F \in S(\lambda) \). A regular subdivision \(S(\lambda) \) is a triangulation if for each face \(F \in S(\lambda) \), its convex hull is a simplex with vertices \(F \).

A subset \(F \subset A \) corresponds to a face \(\mathcal{G}^F \subset \mathcal{G}^A \); it is the set of points \(x \in \mathcal{G}^A \) with \(x_a = 0 \) for \(a \notin F \). As in Section 2, the irrational toric variety \(Z_{\mathcal{G}} \) lies in this face \(\mathcal{G}^F \). For a regular subdivision \(S \) of \(A \), we define a complex \(Z(S) \) of irrational toric varieties to be

\[
Z(S) := \bigcup_{F \in S} Z_F.
\]

This is a complex in that if \(F, F' \in S \) with \(\emptyset \neq \mathcal{G} = F \cap F' \), so that \(\mathcal{G} \) is also a face of \(S \), then

\[
Z_{\mathcal{G}} = Z_F \cap Z_{F'}.
\]

An element \(w \in \mathbb{R}^A_\geq \) acts on the projective toric variety \(Z_F \) as before, with \(w.Z_{\mathcal{G}} \subset \mathcal{G}^F \). Only the coordinates \(w_f \) of \(w \) for \(f \in F \) act on \(\mathcal{G}^F \). For a regular subdivision \(S \) of \(A \) and \(w \in \mathbb{R}^A_\geq \), we have the translated complex of irrational toric varieties,

\[
Z(S, w) := \bigcup_{F \in S} w.Z_F.
\]

Proposition 5.1 ([26, Thm. 3.3]). The points of \(\Delta_A \subset \text{closed}(\mathcal{G}^A) \) are exactly the translated complexes of irrational toric varieties \(Z(S, w) \) for \(w \in \mathbb{R}^A_\geq \) and \(S \) a regular subdivision of \(A \).

Recall that \(\varepsilon \in Y_{\Sigma(A)} \) is the distinguished point of its dense \(\mathbb{R}^A_\geq \)-orbit. We give our main theorem.
Theorem 5.2. For \(w \in \mathbb{R}_{>0}^4 \), the association \(\psi : w.Z.A \mapsto w.\varepsilon \) is a well-defined continuous map from the set of translates of \(Z.A \) to the dense orbit of \(Y_{\Sigma(A)} \) that extends to an \(\mathbb{R}_{>0}^4 \)-equivariant homeomorphism \(\Delta_A \xrightarrow{\sim} Y_{\Sigma(A)} \). Composing it with an algebraic moment map \(Y_{\Sigma(A)} \rightarrow P(A) \) gives a homeomorphism between \(\Delta_A \) and the secondary polytope \(P(A) \).

Proof. We first extend \(\psi \) to an \(\mathbb{R}_{>0}^4 \)-equivariant bijection between \(\Delta_A \) and \(Y_{\Sigma(A)} \), which shows that it is well-defined and that it is a homeomorphism on orbits of \(\mathbb{R}_{>0}^4 \). To show that \(\psi \) is a homeomorphism between \(\Delta_A \) and \(Y_{\Sigma(A)} \), we will use the proof of Theorem 4.5 and Section 4.1 of [26]. The last statement is Theorem 4.7, as \(\Sigma(A) \) is the normal fan to \(P(A) \).

Let \(\sigma \) be a cone of \(\Sigma(A) \) with corresponding regular subdivision \(S.\sigma \). The orbit \(U.\sigma \) in \(Y_{\Sigma(A)} \) has distinguished point \(x.\sigma \). Under the map \(\mathbb{R}^4 \xrightarrow{\sim} \mathbb{R}_{>0}^4 \) given by \(v \mapsto \gamma.v \), the orbit \(U.\sigma = \mathbb{R}_{>0}^4.x.\sigma \) is identified with \(\mathbb{R}^4/\langle \sigma \rangle \), so that the stabilizer of \(x.\sigma \) is the linear span \(\langle \sigma \rangle \) of \(\sigma \).

The complex \(Z(S.\sigma) = Z(S.\sigma, 1) \) for the regular subdivision \(S.\sigma \) is a distinguished point of \(\Delta_A \) corresponding to \(\sigma \). By Lemma 2.4 of [26], the stabilizer of \(Z(S.\sigma, 1) \) in \(\mathbb{R}^4 \) is also \(\langle \sigma \rangle \). Thus the association \(\psi : Z(S.\sigma, \gamma.v) \rightarrow \gamma.v.x.\sigma \) is a well-defined map. This induces an \(\mathbb{R}_{>0}^4 \)-equivariant homeomorphism between the orbits in both spaces, because when both orbits are identified with \(\mathbb{R}^4/\langle \sigma \rangle \), \(\psi \) becomes the identity map. When the subdivision \(S.\sigma \) has a single facet \(A \) so that \(\sigma \) is the minimal cone of \(\Sigma(A) \), this is the map \(\psi \) in the statement of the theorem.

Write \(\psi : \Delta_A \rightarrow Y_{\Sigma(A)} \) for the bijection which is given by

\[
\psi : Z(S.\sigma, w) \mapsto w.x.\sigma,
\]

for \(w \in \mathbb{R}_{>0}^4 \) and \(\sigma \) a cone of \(\Sigma(A) \). We show that if \(\{w_n \mid n \in \mathbb{N}\} \subset \mathbb{R}_{>0}^4 \), \(w \in \mathbb{R}_{>0}^4 \), and \(\sigma \in \Sigma(A) \) are such that

\[
\lim_{n \to \infty} w_n.Z.A = Z(S.\sigma, w)
\]

in the space \(\Delta_A \) of Hausdorff limits, then

\[
\lim_{n \to \infty} w_n.\varepsilon = w.x.\sigma
\]

in the irrational toric variety \(Y_{\Sigma(A)} \), and vice versa. As both \(\Delta_A \) and \(Y_{\Sigma(A)} \) are \(\mathbb{R}_{>0}^4 \)-equivariant closures of their dense orbits, this will complete the proof. A more granular proof could work on pairs of corresponding orbits in the two spaces, arguing on each component \(Z.F \) and using the recursive structure of both sets and of regular subdivisions and refinements.

Our argument that \(\psi \) preserves limits of sequences follows from the proofs of Theorem 3.3 in [26] and Theorem 4.5 (which are essentially the same). These proofs show that the sequences of translates \(w_n.Z.A \) and \(w_n.\varepsilon \) have convergent subsequences. In each, we replace \(w_n \in \mathbb{R}_r^4 \) by \(v_n \in \mathbb{R}^4 \), where \(w_n = \gamma(v_n) \), and then replace \(\{v_n \mid n \in \mathbb{N}\} \) by any subsequence \(\{v_n \mid n \in \mathbb{N}\} \cap \sigma \), where \(\sigma \) is a cone of \(\Sigma(A) \) that meets \(\{v_n \mid n \in \mathbb{N}\} \) in an infinite set. Finally, \(\tau \) is a minimal face of \(\sigma \) such that \(\{v_n \mid n \in \mathbb{N}\} \) is bounded in \(\mathbb{R}^4/\langle \tau \rangle \), and then \(v \in \mathbb{R}^4 \) satisfies

\[
v + \langle \tau \rangle \text{ is an accumulation point of } \{v_n + \langle \tau \rangle \mid n \in \mathbb{N}\} \text{ in } \mathbb{R}^4/\langle \tau \rangle.
\]

Restricting to subsequences, we have \(\lim_{n \to \infty} w_n.\varepsilon = v.x.\tau \) and \(\lim_{n \to \infty} w_n.Z.A = Z(S.\tau, v) \).

We assumed that the original limits ((15) or (16)) exist without restricting to subsequences. Thus, for every cone \(\sigma \) with \(\sigma \cap \{v_n \mid n \in \mathbb{N}\} \) infinite, \(\tau \) is the unique minimal face of \(\sigma \) such
that $\{v_n \mid n \in \mathbb{N}\}$ is bounded in $\mathbb{R}^n / \langle \tau \rangle$, and then v is a point such that
\[
\lim_{n \to \infty} v_n + \langle \tau \rangle = v + \langle \tau \rangle.
\]
This completes the proof, as both ψ and ψ^{-1} preserve limits of sequences. \qed

References

ATA FIRAT PIR, 3200 PAYNE AVE, APT. 24, SAN JOSE, CA 95117

E-mail address: atafirat@gmail.com

FRANK SOTTILE, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843, USA

E-mail address: sottile@math.tamu.edu

URL: http://www.math.tamu.edu/~sottile