
APPENDICES FOR
SCHUBERT POLYNOMIALS, THE BRUHAT ORDER,

AND THE GEOMETRY OF FLAG MANIFOLDS

Abstract. These appendices are intended for informal distribution with the manuscript “Schubert
polynomials, the Bruhat order, and the geometry of flag manifolds” and will not appear in the published
version. They contain no results, only examples which we hope may illustrate some of the main results
of that manuscript. Appendix A is intended to illustrate the geometric results, particularly of Section 5.
We hope this may help others think about intersections of Schubert varieties. Appendix B is concerned
with combinatorial and algebraic aspects of the manuscript. Many diagrams are enhanced with colour
and may be viewed (in postscript) from either of the Authors’ web pages.

Appendix A. Illustrating the geometric theorems

Throughout, let e1, . . . , en be a fixed, ordered basis for the vector space Cn. We use this basis to
obtain a parameterization for Schubert cells and their intersections. Flags are represented by n × n

matrices M : Let (g1, . . . , gn) := M · eT be the ordered basis given by the ‘change of basis’ matrix M .
The ith row of M gives the components of gi. Then M represents the flag 〈〈g1, . . . , gn〉〉. We adopt
some conventions for the entries of M : a dot ( q) will denote an entry of zero and an asterix (*) an
entry which may assume any value in C. One last convention is that the flags Eq , Fq , etc. will always
be defined to be Eq := 〈〈e1, . . . , en〉〉 and the ‘primed’ flags Eq

′, Fq
′, etc., which are opposite to their

unprimed cousins, will be defined by Eq
′ := 〈〈en, en−1, . . . , e2, e1〉〉. We refer to these as the standard

flags.

A.1. Theorem E (ii). In Theorem E (ii), we had u ≤k w, x ≤k z, and wu−1 = zx−1 and we studied
Xω0wEq

⋂

XuEq
′ and Xω0zEq

⋂

XxEq
′. The main result was that, in GrasskC

n,

πk

(

Xω0wEq

⋂

XuEq
′
)

= πk

(

Xω0zEq

⋂

XxEq
′
)

.

The general case of Theorem E (ii) was reduced to Lemma 5.1.2, where w was Grassmannian of
descent k, and k < i =⇒ u(i) = x(i) (and hence also w(i) = z(i)). The first example illustrates this
case.
Let n = 7, k = 4, and

u = 1436257
w = 4567123

x = 4631257
z = 5764123
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Note that wu−1 = (1452)(367) = zx−1. The following matrices represent general flags in the Schubert
cells X◦

ω0w
Eq , X◦

uEq
′, X◦

ω0z
Eq , and X◦

xEq
′, respectively:

* *
* *

* * *

1
1

*
*
*
*
*
*

*
1

1

1

*

*

1

1

* * *
*
*

1
1

1
*

1
1

* *
* *

*

1

1
*

1
*

* *
*
*

*

*
*

*

1

1
1*

1
1

1

* *
* *
*
*

*
**

*
1*

1
1

1*

1
1

1

*
*

* * *

*

We chose w to be Grassmannian so that the cell X◦
ω0w

Eq has a particularly simple form. This gives an
easy parameterization for the intersection of the two cells, X◦

ω0w
Eq

⋂

X◦
uEq

′. In the proof of Lemma 5.1.4
we describe how to find bases parameterized by A := {M ∈ M(w) | M ∈ X◦

uEq}. In practice, this
method may be used to determine the subvariety A of M(w).
First, let g1, . . . , g7 be the rows of the following matrix, where α, β, γ, δ, x, ρ, σ, and τ are arbitrary

elements of C with αδxτ 6= 0:

β γ
δ
ρ σ

τ

α

x

1
1

1
1

1
1

1

These parameters were chosen so that for each j = 1, 2, 3, 4, gj ∈ Ew(j)

⋂

E ′
n+1−u(j) and does not lie

in either of Ew(j)−1 or E ′
n−u(j), hence the 1’s, the condition on α, δ, x, τ , and the 0’s ( q) in their initial

columns.
This matrix determines a flag Gq := 〈〈g1, . . . , gn〉〉 ∈ X◦

ω0w
Eq , since it is in M(w). Also, since

gj ∈ E ′
n+1−u(j) − E ′

n−u(j) for j ≤ k, at least G1, . . . , Gk satisfy the conditions for the flag Gq to be in

X◦
uEq

′. The remaining conditions for Gq ∈ X◦
uEq

′,

Gj−1

⋂

E ′
n+1−u(j) ( Gj

⋂

E ′
n+1−u(j) for k < j,

impose additional restrictions on the parameters. In practice this means we seek conditions to ensure
that (C×gj +Gj−1)

⋂

E ′
n+1−u(j) is non-empty. For instance, for j = 6, since 〈g5, g5〉 = (*,*, 0, 0, 0, 0, 0)

and En+1−u(6) = (0, 0, 0, 0,*,*,*), some cancellation must occur. Indeed, since

−αg5 − βg6 + g + 1 = (0, 0, γ, 1, 0, 0, 0)

g3 = (0, 0, x, ρ, σ, 1, 0),

we must have γρ − x = 0 in order that (C×g6 + G5)
⋂

E ′
n+1−u(6) 6= ∅ . In the general situation, more

complicated determinantal conditions may arise.

From these considerations, we arrive at two equivalent parameterizations for Xω0wEq

⋂

XuEq
′:

γα β
δ

γρ ρ σ
τ

β γ
σ

α β γ
δ
ρ σ

τ
γρ

1

1
1

1

1
1

1

1
1

1
1

1
1

1
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For α, . . . , τ ∈ C×, both matrices represent the same flag in the intersection. To see this, let g1, . . . , g7
be the basis determined by the first matrix, and g′1, . . . , g

′
7 the basis determined by the second matrix.

Then, by the definition of Schubert cells in §2.3, the flags 〈〈g1, . . . , g7〉〉 ∈ X◦
ω0w

Eq and 〈〈g′1, . . . , g
′
7〉〉 ∈

X◦
uEq

′. Since gi = g′i for i = 1, 2, 3, 4, and we have

g′5 = g1 − αg5,

g′6 = g3 − ρ(g1 − αg5 − βg6), and

g′7 = g4 − τ [g3 − ρ(g1 − αg5 − βg6)− σ (g2 − δ(g1 − αg5 − βg6 − γg7))] ,

we see that 〈〈g1, . . . , g7〉〉 = 〈〈g′1, . . . , g
′
7〉〉. Lastly, since ℓ(w) − ℓ(u) = 12 − 5 = 7, and Eq , Eq

′ are
opposite flags, we see that X◦

uEq
′
⋂

X◦
ω0w

Eq is irreducible of dimension 7. Thus the matrices represent
a 7-parameter family of flags in this intersection, which must be dense.
Similarly, (with the same restrictions on parameters), the two matrices below both represent the

same flag in X◦
ω0z

Eq

⋂

X◦
xEq

′:

β γ
σ

δ
τ

δ
τ

ρ σγρ
α β γ

γρ ρ σ
γα β

1
1

1

1
1

1

1
1

1
1

1
1

1
1

If h1, . . . , h7 is the basis determined by the first matrix, then h1 = g2, h2 = g4, h3 = g3, and h4 = g1.
Thus 〈g1, g2, g3, g4〉 = 〈h1, h2, h3, h4〉, which proves

πk

(

XuEq
′
⋂

Xω0wEq

)

= πk

(

XxEq
′
⋂

Xω0yEq

)

.

This is true even when u, w, x, z do not satisfy the extra hypotheses of Lemma 5.1.2. (One may con-
struct a proof using the geometric analogs of the arguments that reduce Theorem E (ii) to Lemma 5.1.2.)
We illustrate this with another example.
Here, let n = 7, k = 3, and

u = 2134765
w = 3571624

x = 2316475
z = 3752164

Note that wu−1 = (154)(2376) = zx−1. Then the following four matrices represent, respectively, the
Schubert cells X◦

ω0w
Eq , X◦

uEq
′, X◦

ω0z
Eq , and X◦

xEq
′:

1
*

* *
*

* 1

1*
*

*
**

1*
1

1*
1

* * *
*
*1

1
1 *

* * *
*

***

1 * *
*1

1
1

* *
* *

* * * *
*
*

*1
1

1
* *

*
1 *

1
1

* *

1

*
**

*
1*

* 1

1
*
* *

1
1**

1
1
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Consider the (equivalent pairs of) parameterizations for flags in the intersections of the cells,X◦
ω0w

Eq

⋂

X◦
uEq

′

(the left-hand pair), and X◦
ω0z

Eq

⋂

X◦
xEq

′ (the right-hand pair):

α

ρ σ τ
γ δ

ρ σ τ
γ δ

α

τ
δ

β
α

γ δ
ρ τ

β
ρ

σ

σ τ
α

ρ

α
β γ δ

ρ σ τ
δ

τ
σ τ

β

β

β γ δ
ρ σ τ

β

1

δσ

δσ 1
1

1

1
1

1
1

αγ
1

1
δσ 1

δσ

δσ

1
αγ 1

δσ 1
1

1
1
1

αγ αγ 1
δσ 1

αγ

αρβσ

To see that each pair of matrices does indeed give the same flag, let g1, . . . , g7, g
′
1, . . . , g

′
7, h1, . . . , h7,

and h′
1, . . . , h

′
7 be the bases given by the four matrices (read left-to-right). Then, for i = 1, 2, 3, gi = g′i

and hi = h′
i. Also,

g′4 = −αg1 + g2 − g4

g′5 = g3 − g5

g′6 = g3 − σg′4 − ρ(g1 − g6)

g′7 = g3 − g7

and

h′
4 = h2 − σh3 + h4 + (γ − ρ)h1

h′
5 = h3 − γh1 − h5

h′
6 = h2 − h6

h′
7 = h3 − h7,

thus, 〈〈g1, . . . , g7〉〉 = 〈〈g′1, . . . , g
′
7〉〉 and 〈〈h1, . . . , h7〉〉 = 〈〈h′

1, . . . , h
′
7〉〉. As before, these parameterized

bases give dense subsets of flags in each of Xω0wEq

⋂

XuEq
′ and Xω0zEq

⋂

XxEq
′. Moreover, since

〈g1, g2, g3〉 = 〈h1, h2, h3〉, we see that

πk

(

Xω0wEq

⋂

XuEq
′
)

= πk

(

Xω0zEq

⋂

XxEq
′
)

.

A.2. Theorem G (ii). We complete Example 6.2.2, giving the geometric side of the story. The
permutation (1978)(26354) is the disjoint product of ζ = (1978) and η = (26354). Note that u =
372186945 ≤4 586913724 = (ζη)u =: w. Let Gq and Gq

′ be the standard flags in C9. The following
matrices parameterize the Schubert cells X◦

ω0586913724
Gq and X◦

372186945Gq
′:

1

1
1

* * ** * *

*****
*

1 *****
1 * *

1 *
1

1 *
1

1

1
1

1
1

1
1

1
1

**
*

*

**
*
*
*
****

* * *
***

* * *
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As before, here are two parameterized matrices, each of which give bases defining the same flag in the
intersection of the two cells:

α

β γ

α

β γ

α

β γ
γ

as-c
1

1
1

a b

a b 1
1

c bs s 1
1

a b 1
1

c bs s 1
1

as-c
1

1
1

a b

a b 1
1

c s 1
1

bs

1

1
1

1
1
sbs

It is clearer to display two matrices ‘on top of each other’, with shading:

α

β γ
γ

a b 1
1

c bs s 1
1

as-c
1

1
1

a b

1

1
1

1
1
sbs

The vertical lines in the last 5 rows illustrate that the left- and right-sides of those rows come from
different (equivalent) bases. The shading accentuates its ‘block form’: Let Q = {1, 7, 8, 9} and P =
{2, 4, 5, 7} = u−1(Q). The P c = {1, 3, 6, 8, 9} = u−1(Qc), where Qc = {2, 3, 4, 5, 6}. Then the shaded
regions are (P × Q)

⋃

(P c × Qc). We see that ζ ′ := (1423) and η′ := (15243) are uniquely defined
by φQζ

′ = ζ and φQcη′ = η. Moreover, we may define permutations v and w as in Lemma 5.2.1; let
v = 2134 and w = 21534. Then

(1) v ≤2 ζ
′v = 3412 and w ≤2 η

′w = 45213.
(2) u = εP,Q(v, w) and (ζη)u = εP,Q(ζ

′v, η′w).

For the last part of Lemma 5.2.1, let Fq , Fq ′ be the standard flags in C4, and Eq , Eq
′ the standard flags

in C5. Then the following four matrices parameterize the Schubert cells X◦
ω0ζ′v

Fq , X◦
vFq

′, X◦
ω0η′w

Eq , and
X◦

wEq
′:

1
1

1
1

* *
**

1
1

1
1

* *
**

1
1

1
1

1

* * *
***

*

1
1

1
1

1

*
**

**
*
*

Then the following two matrices parameterize the two intersections. Again, we have drawn two matrices
on top of each other.

γ
α

β
γ

1
1
1

1

1
1

a b 1
1
1
1

1ba
c bs s

sbs
as

1
-c

Next, note that Gq = ψQ(Eq , Fq) and Gq
′ = ψω9Q(Eq

′, Fq
′). Finally, verifying that

ψP

[(

Xω4ζ′vEq

⋂

XvEq
′
)

×
(

Xω5η′wFq
⋂

XwFq
′
)]



6 APPENDICES

is equal to

Xω9(ζη)uGq

⋂

XuGq
′.

may be done by comparing these parameterized matrices.
In the final part of the proof of Theorem G (ii), we compare images of these intersections un-

der projections to Grassmannians. The row spans of the next three parameterized matrices repre-

sent π2

(

X◦
ω4ζ′v

Eq

⋂

X◦
vEq

′
)

, π2

(

X◦
ω4η′w

Fq
⋂

X◦
wFq

′
)

, and π4

(

X◦
ω9(ζη)u

Gq

⋂

X◦
uGq

′
)

in each of Grass2C
4,

Grass2C
5, and Grass4C

9, respectively.

β

α

γ
β

α
γ

1ba

1c bs s
1

1

1
1 1c bs s

1ba

Thus

π4

(

Xω9(ζη)uψQ(Eq , Fq)
⋂

Xuψω9Q(Eq
′, Fq

′)
)

is equal to

ϕ2,2

(

π2

(

Xω4ζ′vEq

⋂

XvEq
′
)

× π2

(

Xω5η′wFq
⋂

XwFq
′
))

.

Consider the images of Xω4ζ′vEq ×Xω5η′wFq and XvEq
′ ×XwFq

′ under ψP in Fℓ9:

1***

1***

1*

*

*
1

1*

1*

1
1

1

1 * * *
1 * *

1 ***
1

1
1
**

1
1
*

1

This should be compared with the first figure of this section, which shows the cells X◦
ω0586913724

Gq and
X◦

372186945Gq
′. Here, the circles ( ❞) indicate the ‘surprise’ entries of 0; those which are not zero in that

first figure. This illustrates the two inclusions, and serves to illustrate Lemma 4.5.1:

ψP (Xω4ζ′vEq ×Xω5η′wFq) ⊂ X◦
ω0586913724

Gq

ψP (XvEq
′ ×XwFq

′) ⊂ X◦
372186945Gq

′

A.3. Theorem H. We illustrate the ‘cyclic shift’. Let u = 21354 and w = 45123 so that wu−1 = ζ =
(15243). Define x, z ∈ S5 as in the proof of Theorem H′ (§ 5.3) to be x = 31245 and z = 53124. Then
zx−1 = (13542) = ζ(12345). Here, p = 4, m = 1, and l = 2. Let Fq , Fq

′ be the standard flags for C5.
We define Gq = 〈〈e5, e1, e2, e3, e4〉〉 and Gq

′ = 〈〈e4, e3, e2, e1, e5〉〉. Then, with respect to these flags, the
Schubert cells X◦

ω0w
Fq , X◦

uFq
′, X◦

ω0z
Gq , and X◦

xGq
′ are:

1
1

1
1

1

*
* *

**
* *

*

e2 e3 e4e5 e1

1
1

1
1

1

**
* * * *

e2 e3 e4e5 e1

1
1

1
1

1

* * *
***

e1 e2 e3 e4 e5

1
1

1
1

1

* * *
***

* *

e1 e2 e3 e4 e5

Here, since the flags are different, the columns of the matrices on the right correspond to different
elements of our fixed basis, e1, e2, e3, e4, e5, as indicated.
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Here are two matrices giving (equivalent) parameterized bases for flags in the intersection of the cells
X◦

ω0w
Fq

⋂

X◦
uFq

′:

a b
c d c d

d

1
bd 1

1
1

1

bd 1
a b 1

1
1

1

bd

Here a, b, c, d ∈ C×, showing that (C×)4 parameterizes the set A of the intersection of cells. Let g1, . . . , g5
be the basis given by the left matrix and g′1, . . . , g

′
5 the basis given by the right matrix. Since

g2(a, b, c, d) = e5 + c e1 + bd e3 + d e4,

(β1, β2, β3, β4) = (c, 0, bd, d) are regular functions on A. Also, since

e5 = −d g1 + g2 − c g3 + da g4,

δ1 = −d, δ3 = −c, and δ4 = da are regular functions on A with δ4 nowhere vanishing. The bases
h1, . . . , h5 and h′

1, . . . , h
′
5 defined in the proof of Theorem H′, are parameterized by the following two

matrices:
a b

-c -c
a b

c d
d

1
1

1

1
1 da 1 da

1

bd
bd

1

These matrices give equivalent bases, and hence define the same flag. Also, comparing them to the
rightmost two matrices in the first figure of this subsection, shows this flag is in the intersection
X◦

ω0z
Gq

⋂

X◦
xGq

′. Since the first two rows of each matrix have the same span,

π2

(

X◦
ω0w

Fq
⋂

X◦
uFq

′
)

= π2

(

X◦
ω0z

Gq

⋂

X◦
xGq

′
)

,

which is the main geometric result needed to deduce Theorem H′.

Appendix B. Combinatorial and algebraic examples

B.1. Suborders of S4. The Bruhat order is one of our main objects of study in this paper. Here is a
picture of the (full) Bruhat order and the 2-Bruhat order on S4.

2341 3142 2413 14323214 4123

3241 3412 4213 41322431

3421 4231 4312

2314 3124 2143 14231342

2134 1324 1243

1234

4321

3214 41232341 14323142 2413

2314 3124 2143 1342 1423

2134 1324 1243

1234

41324213341224313241

4321

3421 4231 4312
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For comparison, here is the ¹-order on S4 (reproduced from §3.2).

(124) (14)(23) (142)(243) (12)(34) (132)(134)(234) (123)

(1234) (1324) (1342) (1243) (1423) (1432)

(24) (34) (23) (14) (12) (13)

(13)(24)

e

(143)

B.2. Chains in the P -Bruhat order. Theorem B describes the relation between chains in the P -
Bruhat order and the structure constants cwuv, when v is a minimal coset representative in vP . We
consider an instance of this. Let P := 〈(1, 2), (4, 5)〉 ⊂ S5. Then 32154 ≤P 45312 and this is the
interval [32154, 45312]P :

42153 35124 32514 34152

43152 45123 42513 35142 35214 34512

35412452134513243512

45312

32154

The multiple edges are those with two possible colourings. One may verify that f 45312
32154 (P ) = 57. To

check Theorem B, we first compute c4531232154 v for those v ∈ S5 of length 4 which are minimal in their
P -coset.

25134, 34125, 24315, 15324, 14523, and 23514.

The first two are Grassmannian of descent 2, and the last two are Grassmannian of descent 3. Since
32154 6≤2 45312, we have

c4531232154 25134 = c4531232154 34125 = 0,

Let ζ = (13425). Then 45312 = ζ · 32145 and (13425)(12345) = (12435). Since (12435) = v( , 3) ·
v( , 3)−1 and 32154 ≤3 45312, Theorem H implies

c4531232154 14523 = c = 1 and c4531232154 23514 = c = 1.

Next, let Fq , Fq
′, Fq

′′ be in general position. If Eq ∈ X15324Fq
⋂

X32154Fq
′, then E2 ⊂ F ′

4 and E2 ⊃ F1,
contradicting Fq and Fq

′ in general position. Thus

c4531232154 15324 = #
(

X15324Fq
⋂

X32154Fq
′
⋂

Xω045312Fq
′′
)

= 0.

To compute c4531232154 24315 = deg (Sω045312 ·S32154 ·S24315), note that Sω0 45312 = S21354 = S(1,2) ·S(4,5).
Two applications of Monk’s formula show c4531232154 24315 = 1. (The other computations could also have
proceeded via Monk’s formula.)
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To compute f v
e (P ) for these minimal coset representatives, consider the part of the P -Bruhat order

rooted at e and restricted to permutations of length at most 4:

25134 34125 24315 15324 14523 23514

24135 15234 14325 23415 13524

23145 14235 13425 12534

13245 12435

12345

17 16 24 24 16 17

1

31

57675

1

3 1

The small numbers adjacent to each permutation v are f v
e (P ). Thus

∑

v

f v
e (P ) c4531232154 v = 17 · 0 + 16 · 0 + 24 · 1 + 24 · 0 + 16 · 1 + 17 · 1 = 57,

which equals f 45312
32154 (P ).

B.3. Instance of Theorem D. We consider Ψ{1,3,5,...}(S516432).

S516432 = x4
1x

2
2x

3
3x5 + x4

1x2x
3
3x4x5 + x4

1x
3
3x

2
4x5

+x4
1x

3
2x

2
3x5 + x4

1x
2
2x

3
3x4 + x4

1x
2
2x

2
3x4x5 + x4

1x2x
3
3x

2
4 + x4

1x2x
2
3x

2
4x5

+x4
1x

3
2x

2
3x4 + x4

1x
3
2x3x4x5 + x4

1x
2
2x

2
3x

2
4 + x4

1x
2
2x3x

2
4x5

+x4
1x

3
2x3x

2
4 + x4

1x
3
2x

2
4x5.

Ψ{1,3,5,...}(S516432) = S516432(y1, z1, y2, z2, y3, z3, . . .), which is

y41y
3
2y3(z

2
1 + z1z2 + z22) + y41y

2
2y3(z

3
1 + z1z

2
2 + z21z2) + y41y

3
2(z

2
1z2 + z1z

2
2)

+ (y41y
2
2 + y41y2y3)(z

3
1z2 + z21z

2
2) + (y41y2 + y41y3)z

3
1z

2
2 .

Using the definition of Schubert polynomials in §2.2, one may check

S54213 = x4
1x

3
2x3 S53214 = x4

1x
2
2x3

S54213 = x4
1x

3
2 S53124 = x4

1x
2
2

S52314 = x4
1x2x3 S51324 = x4

1x2 + x4
1x3

The Schubert polynomials Sw for w ∈ S4 are indicated in Figure 1. The Schubert polynomial Sw is
written below the permutation w, and these data are displayed at the vertices of the permutahedron
(Cayley graph of S4). The divided difference operators are displayed on the edges of this figure.
We see that Ψ{1,3,5,...}S516432 = S516432(y1, z1, y2, z2, y3, z3, . . .) is equal to

S54213(y)S1423(z) + S53214(y) [S4123(z) +S2413(z)] + S54123(y)S2413(z)

+ [S53124(y) +S52314(y)] [S4213(z) +S3412(z)] + S51324(y)S4312(z).

B.4. Automorphisms of (S∞,¹). The definition of the k-Bruhat orders imply that if u, w ∈ Sn, and
k < n, then the following are equivalent:

u ≤k w ω0w ≤k ω0u wω0 ≤n−k uω0 ω0uω0 ≤n−k ω0wω0.

These induce the following isomorphisms (which were stated in Theorem 3.2.3) of intervals in the
¹-order on S∞. Suppose ζ ∈ Sn and ζ = ω0ζω0. Then

[e, ζ]¹ ≃ [e, ζ
−1
]op¹ ≃ [e, ζ−1]op¹ ≃ [e, ζ]¹.

These are illustrated in the posets displayed in Figures 2 and 3.
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a 2c

a 2c

a 3

2 2

1

1 1

3

3
3

b 2a
b 2aba 2

ba 2ba 2

a 2 ab
ac aba 2 b 2

1

3

2

1

1
1

11

1

3 3

3
2

2

2

2

2

3
3

3 31

1

2

2

2

ba c

ac

b 2cba c

ba 2 c ba 2 c b 2a c b 2a 2 ba 3 a 3c

b 2a 3

ba 2

cbab

3

2

a 2ab

ba 3

cb 2a 2 ba 3 c

cb 2a 3

2314 3124
+

a

1342 1423

4321

42313421 4312

41324213341224313241

+ +
1432

++

+ + +

a+b a+b+c

2143

++

+ +

3214 2341 3142 2413 4123

++

1
1234

2134 1324 1243

Figure 1. Schubert polynomials in S4

B.5. Canonical algorithms? Besides Algorithm 3.1.1, there are three other ‘canonical’ algorithms
for finding a chain between u and w when u ≤k w, each induced from Algorithm 3.1.1 by one of the
automorphisms of the previous section. For example, here is one.

Algorithm B.5.1 (Produces a chain in the k-Bruhat order).
input: Permutations u, w ∈ S∞ with u ≤k w.

output: A chain in the k-Bruhat order from w to u.

Output w. While u 6= w, do

1 Choose a ≤ k with w(a) maximal subject to u(a) < w(a).
2 Choose k < b with w(b) minimal subject to w(b) ≤ u(a) < u(b).
3 u := u(a, b), output u.

In general, these algorithms produce different chains. In S7, consider the two permutations 2317546 <3

4671235. Here are chains produced by the four algorithms:

2317546 2317546 2317546 2317546
2417536 2417536 2371546 2371546
2517436 2517436 2571346 2571346
2617435 4517236 2671345 3571246
4617235 4617235 3671245 4571236
4671235 4671235 4671235 4671235
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Here are the four algorithms for producing chains in [e, ζ]¹:

Algorithm B.5.2 (Chains in ≺-order). input: A permutations ζ ∈ S∞.

output: Chains in [e, ζ]¹.

I Output ζ. While ζ 6= e, do

1 Choose α minimal such that α < ζ(α).
2 Choose β maximal with ζ(β) < ζ(α) ≤ β.

3 ζ := ζ(α, β), output ζ.
II Output ζ. While ζ 6= e, do

1 Choose β maximal such that β > ζ(β).
2 Choose α minimal with ζ(α) > ζ(β) ≥ α.

3 ζ := ζ(α, β), output ζ.
III Output e. While ζ 6= e, do

1 Choose ζ(α) maximal such that α < ζ(α).
2 Choose ζ(β) minimal with ζ(β) ≤ α < β.

3 ζ := ζ(α, β), output (α, β).
IV Output e. While ζ 6= e, do

1 Choose ζ(β) minimal such that β > ζ(β).
2 Choose ζ(α) maximal with ζ(α) ≥ β > α.

3 ζ := ζ(α, β), output (α, β).

B.6. Simplicial complexes and ≤k. In the theory of partially ordered sets, one often constructs a
simplicial complex ∆(P ) from a poset, P . We compute one such for an interval in the k-Bruhat order,
which shows these intervals are not in general shellable. We illustrate this with one example drawn
from this paper. In Example 3.2.4, we considered the interval [21342, 45123]2. We display that interval
below, together with the Hasse diagram of an isomorphic poset:

a

c d e

g

x

1̂

0̂

y

h

b

f

35124 43125

45123

25134 34125 42135

24135 4123532145

23145 31245

21345

The simplicial complex ∆(P ) associated to a poset P has as simplices all chains, including the non-
maximal ones. In our case above, the maximal simplices are

{a, c, f, x}, {a, c, g, x}, {b, d, g, x}, {b, d, h, y}, {b, e, h, y}.

While ({a, c, f, x}, {a, c, g, x}) and ({b, d, h, y}, {b, e, h, y}) are attached along facets ({a, c, x} and
{b, h, y}, respectively), the pairs ({a, c, g, x}, {b, d, g, x}) and ({b, d, g, x}, {b, d, h, y}) are not. They are
attached along codimension 2 faces, {g, x} and {b, d}, respectively. Thus this simplicial complex is not
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shelable. Below, we display a geometric realization of this simplicial complex:

a

c

x d

b
h

e
f

y

g

B.7. Schensted insertion and the cwuv(λ,k). In §6.3, we discussed how the conclusion of Theorem F′

holds for many permutations in S6, even most which are not skew permutations. We illustrate that
here.
Let ζ = (145236). Then 214365 ≤4 ζ · 214365 = 345612. In Figure 2, we display the labeled Hasse

diagram of [214365, 345612]4 and beside it a table of the words of the 14 chains in this interval, each
displayed above its insertion and recording tableau.

6534363543

34

56354 56534 53654

24

2546

54364

56543 65324345612

245613

215364

214365

5

3

3

3

6 3

215634215463

215643 235614

4 4

4 6

214563

5

6

214653

5

3
315462

6

315642

4

314562

6 3

314652

5

6

3 5

5

214635

234615

315624

325614

4

2

3

5

3

5

324615

314625

2

12
3
4
5

35
4
5
6

24
3
5
6

15
2
3
4

33
4
5
6

13
2
4
5

33
4
5
6

14
2
3
5

56343

46 34

56324

3536

54643

2446 46 25

54634

2535

63254

25

63524

3555355555

33

5

12

5

24

5

12

4

34

5

13

5

34

5

34

5

13

4

14

3

34

6

12

5

34

6

12

4

34

6

13

5

24

6

13

4

24

6

14

3

Figure 2. Labeled Hasse diagram of [214365, 345612]4 and Schensted insertion

Note that η := (125634) = ζ(123456) and 312564 ≤4 η · 312564 = 425631. We continue this example,
and illustrate Theorem H. In Figure 3 are the labeled Hasse diagram of [312564, 425631]4, and the
insertion and recording tableaux for all 14 chains in this interval.
For these last two intervals, it is interesting to view them with the permutation v ∈ [u, w]k replaced

by the geometric graph of vu−1, as illustrated in Figure 4. This gives an idea of the effect of a ‘cyclic
shift’ on the ¹-order.
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34 24

25

46542 64325 64542 64352

34 35 24 25

252535

46254

46352

46524

46325

42654

43652

64524

43625

64254

43265312654412563

312564

314562

324561314652412653413562

423561 413652 324651

423651 415632 325641

425631

4
6

4

315642

5 2 4

3 5 62

5 4
2

526

26

6
4463 2

45 45 45 45 45

3636363636

24
3
5
6

12
3
4
5

25
3
4
6

15
2
3
4

25
3
4
6

13
2
4
5

25
3
4
6

14
2
3
5

24

6

12

5

24

6

12

4

24

6

13

5

24

6

13

4

24

6

14

3

25

4

12

5

25

4

12

4

25

4

13

5

25

4

13

4

25

4

14

3

Figure 3. Labeled Hasse diagram of [312564, 425631]4 and Schensted insertion

1
2

6
5

34

1
2

6
5

34

Figure 4. Geometric graphs of permutations in [e, ζ]¹ and [e, η]¹
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B.8. Irreducible derangements, geometric graphs, and cyclic shift. Here, we give tables dis-
playing derangements in small symmetric groups that are irreducible. This is a companion to Section
6. The skew permutations are in boldface. They are grouped together under the equivalence relation
generated by cyclic shift, inversion, and conjugation by the longest element. The permutations in a row
are those in a single orbit under ‘cyclic shift’, which is conjugation by the long cycle (1 2 . . . n). We
display the geometric graph only for one permutation in an equivalence class. Lastly, we also display
a skew shape κ for which c

ζ
λ = cκλ for λ fitting in a box of size k × (n− k).

S3:

shape k permutations

1 (132)

2 (123)

S4:

shape k permutations

1 (1432)

3 (1234)

2 (1243) (1423) (1342) (1324)

2 (13)(24)

S5:

shape k permutations

1 (15432)

4 (12345)

2 (12543) (15423) (15342) (14532) (14325)

3 (35421) (13245) (12435) (12354) (15234)

2 (13542) (15324) (14352) (13254) (15243)

3 (12453) (14235) (12534) (14523) (13425)

2 (13)(254) (24)(153) (35)(142) (14)(253) (25)(143)

3 (13)(245) (24)(135) (35)(124) (14)(235) (25)(134)

2 (14253)

3 (13524)
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In S3,S4, and S5 all permutations are equivalent to a skew shape, but in S6, the situation is different.
Here, the graphs and shapes which are equivalent to skew shapes are displayed in blue, those for which
we know the shape by path-counting and geometry/algebra are in maroon, and in green, we display
the 6 for which the restriction on κ (namely κ ⊂ (n− k)k) is necessary. These are

(125634), (145236), (143652), (163254), (153)(246), and (135)(264).

We also first list the minimal permutations, those for which |ζ| = 5.

Minimal Permutations in S6:

shape k permutations

1 (165432)

5 (123456)

2 (126543) (165423) (165342) (164532) (156432) (154326)

4 (345621) (324561) (243561) (235461) (234651) (623451)

2 (146532) (164325) (154362) (132654) (165243) (163542)

4 (235641) (523461) (263451) (456231) (342561) (245361)

2 (136542) (142356) (125346) (123645) (156234) (134526)

4 (245631) (653241) (643521) (546321) (432651) (625341)

2 +

2 (143652) (163254)

4 (256341) (452361)

3 (123654) (165234) (163452) (145632) (143256) (125436)

3 (124653) (164235) (153462) (132645) (156243) (135426)

3 (356421) (532461) (264351) (546231) (342651) (624531)

3 (134652) (163245) (143562) (132546) (124365) (162354)

3 (256431) (542361) (265341) (645231) (563421) (453261)

3 (125463) (142365) (162534) (136452) (156324) (143526)

3 (132564) (152436) (126354) (146523) (163425) (145362)

3 (153426) (126453) (156423)

3 (624351) (354621) (324651)
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shape k permutations

2 (13)(2654) (24)(1653) (35)(1642) (46)(1532) (15)(2643) (26)(1543)

4 (13)(4562) (24)(3561) (35)(2461) (46)(2351) (15)(3462) (26)(3451)

2 (142)(365) (164)(253) (152)(364) (154)(263) (143)(265) (163)(254)

4 (241)(563) (461)(352) (251)(463) (451)(362) (341)(562) (361)(452)

2 (25)(1643) (36)(1542) (14)(2653)

4 (25)(1346) (36)(1245) (14)(2356)

3 (124)(365) (164)(235) (152)(346) (145)(263) (143)(256) (136)(254)

3 (421)(564) (461)(532) (251)(643) (541)(362) (341)(652) (631)(452)

3 (13)(2564) (24)(1536) (35)(1264) (46)(1523) (15)(2634) (26)(1453)

3 (13)(2465) (24)(6351) (35)(4621) (46)(3251) (15)(4362) (26)(3541)

3 (46)(1253) (15)(2364) (26)(1534) (13)(2645) (24)(1563) (35)(1426)

3 (46)(3521) (15)(4632) (26)(4351) (13)(5462) (24)(3651) (35)(6241)

3 (25)(1436) (36)(1254) (14)(2365) (25)(1634) (36)(1452) (14)(2563)

2 ++

3 (153)(246) (135)(264)

2 (142653) (164253) (153642) (153264) (152643) (154263)

4 (356241) (352641) (246351) (462351) (346251) (362451)

3 (125364) (152364) (152634) (145263) (142563) (142536)

3 (463521) (463251) (436251) (362541) (365241) (635241)

3 (13)(25)(46) (15)(24)(36) (14)(26)(35)

3 (142635) (146253) (136425) (153624) (135264) (152463)

2 (153)(264)

4 (135)(246)

3 (25)(1364) (36)(1524) (14)(2635) (25)(1463) (36)(1425) (14)(2536)

3 (14)(25)(36)
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