
alphaCertified

Jonathan D. Hauenstein

May 6, 2011



alphaCertified

1 Introduction to alphaCertified

The program alphaCertified by Jonathan D. Hauenstein and Frank Sottile implements algorithms
based on Smale’s α-theory to certify solutions to polynomial systems. This manual provides de-
tailed instructions on how to use alphaCertified while [4] provides more information regarding the
mathematical theory underlying alphaCertified.

2 Compiling alphaCertified

The program alphaCertified is written in C and uses the GMP[3] and MPFR[2] libraries to perform
rational and arbitrary floating point arithmetic. To compile alphaCertified, the user needs to verify
the settings in Makefile associated with the C compiler and the location of these libraries. The
following is an example of the first three lines in Makefile which specifies using gcc along with the
locations of the GMP and MPFR installation directories.

COMP=gcc
GMP=/home/GMP 4 3 2/
MPFR=/home/MPFR 2 4 2/

The following is the next two lines in Makefile which specifies to the C compiler which
libraries to link to and location of the header files.

LIB=-lm -L$(MPFR)/lib/ -lmpfr -L$(GMP)/lib/ -lgmp
INC=-I$(MPFR)/include -I$(GMP)/include

When using gcc, for example, if the proper static libraries were created, adding the “-static”
option on the LIB line, displayed below, will create a statically linked executable.

LIB=-static -lm -L$(MPFR)/lib/ -lmpfr -L$(GMP)/lib/ -lgmp

Once Makefile is setup, simply run ‘make’ to compile alphaCertified.

1



3 Using alphaCertified

To use alphaCertified, the user needs to create at least two files which specify the polynomial system
and the points to test. An optional third file can be used to adjust the configuration settings. See
Appendix A for a detailed description of each configuration setting.

3.1 Polynomial systems

The polynomial system is entered into a file by listing the monomials and the coefficients appearing
in each polynomial. The polynomial system must be square or overdetermined and each coefficient
must be a complex rational number.

The first line of the file lists both the number of variables and the number of polynomials
for the polynomial system. Then, the file contains a block for each polynomial which contains the
number of terms followed by the degrees of each variable in the monomial and the real and imaginary
parts of its coefficient. For example, if the polynomial system depends upon three variables, say x,
y, and z, the term (

1
2

+ 3i
)
xy2z

would be written as
1 2 1 1/2 3

since the degrees of x, y, and z in xy2z are 1, 2, and 1, respectively, and the coefficient has real

part
1
2

and imaginary part 3.

For a complete example, consider f(x, y, z) =

 x2 − 3xy + z4(
1
2 + 3i

)
xy2z − 9z + 2x+ 7
z10 − i

. The polyno-

mial system file for f is as follows.

3 3

3
2 0 0 1 0
1 1 0 −3 0
0 0 4 1 0
4
1 2 1 1/2 3
0 0 1 −9 0
1 0 0 2 0
0 0 0 7 0
2
0 0 10 1 0
0 0 0 0 −1

Table 1: Example of a polynomial system file for f

2



3.2 Input points

The points are read into alphaCertified using the requested arithmetic type (see Appendix A for
more details). In particular, if alphaCertified is configured to use rational arithmetic, the real and
imaginary parts of the coordinates for each point must be a rational number. Likewise, if alphaC-
ertified is configured to use P -bit floating point arithmetic, the the real and imaginary parts of the
coordinates for each point must be a floating point number and are read into alphaCertified using
P -bit precision. When using floating point arithmetic, many of the output files generated by Bertini
[1] can be used for input into alphaCertified.

The first line of the file lists the number of points in the file. This is followed by a block
for each point which contains the real and imaginary parts of each coordinate. For example, the
following presents

S =


 2

3 + 2i
−7
3i

 ,
 1

8
−7 + 2i
−1− 2

5 i


using rational and 10-digit floating point representation.

2

2/3 2
−7 0
0 3

1/8 0
−7 2
−1 −2/5

Table 2: Example using rational numbers for S

2

0.6666666667 2
−7 0
0 3

0.125 0
−7 2
−1 −0.4

Table 3: Example using floating point numbers for S

3.3 Configuration settings

To adjust the configuration settings, the user needs to create a file listing the configurations along
with the requested values. See Appendix A for each configurable setting and its acceptable values.

3



For example, the following presents settings that would only certify approximate solutions
using 192-bit floating point precision.

ALGORITHM: 0;
ARITHMETICTYPE: 1;
PRECISION: 192;

Table 4: Example of configuration settings

3.4 Running alphaCertified

The command line arguments for alphaCertified specify the names of the files to use. The default
names for the corresponding files are polynomialSystem, testPoints, and settings.

The command line arguments correspond to the names of these files in order. For example,
if there are two arguments, the first is the name of the polynomial system file and the second is
the name of the file containing the points to test. Default names will be used when less than three
command line arguments are used. Errors will be returned if either the polynomial system or the
test points file do not exist. If the configuration settings file does not exist, the default settings will
be used.

For example, if there is no file named settings in the current folder, the following Linux com-
mand runs alphaCertified using the default settings on the polynomial system file named polySys
and the test points file named points.

� ./alphaCertified polySys points

4 Output of alphaCertified

The output of alphaCertified is a collection of files that are dependent upon the configuration
settings and the polynomial system as well as an onscreen summary. The following lists the pos-
sible files created by alphaCertified, their format, and the settings needed to create them. See
Appendix A for more details regarding the configurations settings.

• approxSolns

This file, in the format of the input points files described in Section 3.2, lists the points which
are certifiably approximate solutions. This file is always created.

• constantValues

This file lists an upper bound of α, an approximation of β, and an upper bound of γ for
each point (see [4] for details on how these values are computed). These values are always
printed using a 16-digit floating point representation. The format is similar to that presented
in Table 3. In particular, the first line lists the number of points and then a block for each
point which lists the computed values for α, β, and γ on separate lines. This file is always
created.

4



• distinctSolns

This file, in the format of the input points files described in Section 3.2, lists the points which
are certifiably approximate solutions that correspond to distinct solutions. This file is created
when ALGORITHM is at least 1.

• isApproxSoln

This file lists boolean values (0 or 1) describing whether each point has been certified to be
an approximate solution. The first line lists the number of points and then the boolean value
is listed for each point. Note that a value of 0 means that alphaCertified was not able to
certify that it was an approximate solution. This file is always created.

• isDistinctSoln

This file, in the same format as isApproxSoln, lists values describing whether each point
corresponds to a distinct solution. A value of −2 means that the point was not able to be
certified as an approximate solution. A value of −1 means that the point corresponds to a
solution that is distinct from the certifiably approximate solutions that precede it in the list
of points. A nonnegative value, say j, means that this point and the jth point correspond to
the same solution, where the points are numbered staring with 0. This file is created when
ALGORITHM is at least 1.

• isRealSoln

This file, in the same format as isApproxSoln, lists values describing whether each point
corresponds to a real solution. A value of −2 means that the point was not able to be certified
as an approximate solution. Otherwise, the value is a boolean value (0 or 1) describing if the
point corresponds to a real solution. This file is created when ALGORITHM is 2 and the
polynomial system is real.

• nonrealDistinctSolns

This file, in the format of the input points files described in Section 3.2, lists the points which
are certifiably approximate solutions that correspond to distinct nonreal solutions. This file
is created when ALGORITHM is 2 and the polynomial system is real.

• realDistinctSolns

This file, in the format of the input points files described in Section 3.2, lists the points which
are certifiably approximate solutions that correspond to distinct real solutions. This file is
created when ALGORITHM is 2 and the polynomial system is real.

• redundantSolns

This file, in the format of the input points files described in Section 3.2, lists the points
which are certifiably approximate solutions and correspond to the same solution as another
certifiably approximate solution that precedes it in the list of points. This file is created when
ALGORITHM is at least 1.

• refinedPoints

5



This file, in the format of the input points files described in Section 3.2, lists the most accurate
internally computed approximation of the corresponding solution. If REFINEDIGITS is
positive, say τ , then, for each certifiable approximate solution, the point listed in this file is
within 10−τ of the corresponding solution. This file is always created.

• summary

This file is a human-readable summary for each point. The first part of this file reprints the
onscreen summary of the results. This is followed by a block for each point which lists the
point, the results for that point, and the computed values of α, β, and γ for both the original
point and its corresponding point printed in refinedSolns (see [4] for details on how these
values are computed). The last part of this file contains configuration settings and version
information for alphaCertified. This file is always created.

• unknownPoints

This file, in the format of the input points files described in Section 3.2, lists the points which
can not be certified as approximate solutions. This file is always created.

5 Performing Newton iterations using alphaCertified

When using alphaCertified for certifying solutions, the certified approximate solutions can be refined
using Newton’s method to any given accuracy using the REFINEDIGITS configuration setting. In-
stead of only refining the certified approximate solutions, alphaCertified can also be used to perform
Newton iterations on all of the input points using the NEWTONONLY and NUMITERATIONS
configuration settings. See Appendix A for more details regarding these configuration settings.

Note that if floating point arithmetic is begin used, i.e., ARITHMETICTYPE is 1, the
internal working precision is automatically increased during each iteration.

6 Maple interface for alphaCertified

The Maple interface for alphaCertified can be used to construct the input files, run alphaCertified,
and read in output files. After updating libname to include the folder where the alphaCerti-
fied Maple interface is located, it can be loaded with the following command:

> with(alphaCertifiedMaple);

yielding the following output:

[alphaCertified, defaultSettings, loadOutput, printPoints, printPolynomialSystem, printSettings]

The following describes how to use these six procedures.

6.1 alphaCertified

The Maple procedure alphaCertified constructs the input files, runs alphaCertified, and loads output
data.

6



PointsData := alphaCertified(alphaPath, Polys, Vars, Points, Settings);

• alphaPath

A string which is the path to an alphaCertified executable file.

• Polys

A list containing the polynomial system.

• Vars

A list containing the variables of the polynomial system.

• Points

A two-dimensional list containing the points to test.

• Settings (optional)

A Maple record containing the configuration settings. See Section 6.2 for more details con-
structing this record.

• PointsData

A Maple record containing output data from alphaCertified. The fields in this record are:

– alpha

A list containing an upper bound of α at each point.

– beta

A list containing an approximation of β at each point.

– gamma

A list containing an upper bound of γ at each point.

– refinedPts

A two-dimensional list containing the refined points.

– isApproxSoln

A list that describes if each point is a certifiable approximate solution. Each value is
either “Unknown”, “Yes”, or “No”.

– isDistinctSoln

A list that describes if each point corresponds to a distinct solution. Each value is either
“Unknown”, “Yes”, or “No”.

– isRealSoln

A list that describes if each point corresponds to a real solution. Each value is either
“Unknown”, “Yes”, or “No”.

7



Example

> alphaPath := “./alphaCertified”;
> Polys := [x ∗ y2 + x, x ∗ y − y];
> Vars := [x, y];
> Points := [[0,0],[1,I],[1,-I]];
> PointsData := alphaCertified(alphaPath, Polys, Vars, Points);

6.2 defaultSettings

The Maple procedure defaultSettings constructs the Maple record containing the default configu-
ration settings.

Settings := defaultSettings();

• Settings

A Maple record containing the default configuration settings. The fields in this record are:

– algorithm

– arithmeticType

– precision

– refineDigits

– numRandomSystems

– randomDigits

– randomSeed

– newtonOnly

– numIterations

– realityCheck

– realityTest

– deleteFiles

Example

The following constructs the Maple record for the configurations settings described in Table 4.

> Settings := defaultSettings();
> Settings:-algorithm := 0;
> Settings:-arithmeticType := 1;
> Settings:-precision := 192;

8



6.3 loadOutput

The Maple procedure loadOutput loads output data.

PointsData := loadOutput(newtonOnly, algorithm, isReal, numVars);

• newtonOnly

The value, either 0 or 1, of the configuration setting NEWTONONLY.

• algorithm

The value, either 0, 1, or 2, of the configuration setting ALGORITHM.

• isReal

A boolean value, i.e., either true or false, that describes if the input polynomial system is a
real polynomial system.

• numVars

The number of variables for the polynomial system.

• PointsData

A Maple record containing output data from alphaCertified. See Section 6.1 for the structure
of this record.

Example

> newtonOnly := 0;
> algorithm := 1;
> isReal := true;
> numVars := 2;
> PointsData := loadOutput(newtonOnly, algorithm, isReal, numVars);

6.4 printPoints

The Maple procedure printPoints constructs an input point file.

printPoints(pointsName, Points, arithmeticType);

• pointsName

A string which is the name of the file to create.

• Points

A two-dimensional list containing the points to print.

9



• arithmeticType

The value, either 0 or 1, of the configuration setting ARITHMETICTYPE. If 0, the coor-
dinates of the points are printed using a rational representation, otherwise, the points are
printed using a floating point representation.

Example

> pointsName := “testPoints”;
> Points := [[0,0],[1,I],[1,-I]];
> arithmeticType := 1;
> printPoints(pointsName, Points, arithmeticType);

6.5 printPolynomialSystem

The Maple procedure printPolynomialSystem constructs a polynomial system file.

printPolynomialSystem(polyName, Polys, Vars);

• polyName

A string which is the name of the file to create.

• Polys

A list containing the polynomial system.

• Vars

A list containing the variables of the polynomial system.

Example

> polyName := “polynomialSystem”;
> Polys := [x ∗ y2 + x, x ∗ y − y];
> Vars := [x, y];
> printPolynomialSystem(polyName, Polys, Vars);

6.6 printSettings

The Maple procedure printSettings constructs a configuration settings file.

printSettings(settingsName, Settings);

• settingsName

A string which is the name of the file to create.

10



• Settings

A Maple record containing the configuration settings. See Section 6.2 for more details con-
structing this record.

Example

The following constructs the configurations settings file described in Table 4.

> settingsName := “settings”;
> Settings := defaultSettings();
> Settings:-algorithm := 0;
> Settings:-arithmeticType := 1;
> Settings:-precision := 192;
> printSettings(settingsName, Settings);

11



Bibliography

[1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Bertini: Software for numerical
algebraic geometry. Available at http://www.nd.edu/∼sommese/bertini.

[2] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A Multiple-Precision
Binary Floating-Point Library with Correct Rounding. ACM Transactions on Mathematical
Software, 33(2), Art. 13, 2007.

[3] T. Granlund. GNU MP: the GNU multiple precision arithmetic library. Available at
http://www.gmplib.org.

[4] J.D. Hauenstein and F. Sottile. Algorithm XXX: alphaCertified: certifying solutions to poly-
nomial systems. Preprint, 2010.

12



Appendix A

Configurations

The configurations for alphaCertified are presented below along with a brief description.

Table A.1: Configurations for alphaCertified
NAME ACCEPTABLE VALUES DEFAULT VALUE

ALGORITHM 0, 1, 2 2
ARITHMETICTYPE 0 or 1 0

PRECISION ≥64 96
REFINEDIGITS ≥0 0

NUMRANDOMSYSTEMS ≥2 2
RANDOMDIGITS > 0 10
RANDOMSEED >0 random
NEWTONONLY 0 or 1 0

NUMITERATIONS > 0 2
REALITYCHECK -1, 0, or 1 1
REALITYTEST 0 or 1 0

Configurations

• ALGORITHM

If ALGORITHM is 0, alphaCertified only determines which points are certifiably approxi-
mate solutions for the given polynomial system. If ALGORITHM is 1, alphaCertified also
determines which certifiable approximate solutions correspond to distinct solutions. If AL-
GORITHM is 2 and the polynomial system is real, i.e., has only real coefficients, alphaCer-
tified also determines which certifiable approximate solutions correspond to real solutions.

• ARITHMETICTYPE

If ARITHMETICTYPE is 0, alphaCertified performs all computations using rational (cer-
tifiable) arithmetic. If ARITHMETICTYPE is 1, alphaCertified performs all computations
using floating point arithmetic. In this case, the results of alphaCertified are soft certified
since the floating point errors are not fully controlled. One way to control local errors is to
increase PRECISION.

13



• PRECISION

If ARITHMETICTYPE is 1, PRECISION indicates the starting level of precision (in bits).
That is, all computations for each point start with this precision, but the internal working
precision can be increased as needed. Standard settings include 64 bits (roughly 19 decimal
digits), 96 (28), 128 (38), 160 (48), 192 (57), 224 (67), and 256 (77). In general, N bits is
equivalent to bN log10(2)c decimal digits.

• REFINEDIGITS

If REFINEDIGITS is positive, say τ , all of the certifiable approximate solutions will be refined
using Newton’s method to be within 10−τ of the corresponding solution. If ARITHMETIC-
TYPE is 1, the precision will automatically be increased internally so that the refined point
is computed using a precision that has at least τ decimal digits.

• NUMRANDOMSYSTEMS

When the polynomial system is overdetermined, alphaCertified will analyze NUMRANDOM-
SYSTEMS number of randomized square systems.

• RANDOMDIGITS

When the polynomial system is overdetermined, each randomized square system must have a
solution within 10−τ to be considered an approximate solution for the overdetermined system,
where τ is RANDOMDIGITS.

• RANDOMSEED

RANDOMSEED is the seed for the random number generator.

• NEWTONONLY

If NEWTONONLY is 1, alphaCertified performs NUMITERATIONS number of Newton
iterations on the points. If ARITHMETICTYPE is 1, the precision will automatically be
increased internally following each iteration.

• NUMITERATIONS

The number of Newton iterations to perform when NEWTONONLY is 1, that is, when
alphaCertified is only setup to only perform Newton iterations on the points.

• REALITYCHECK

If REALITYCHECK is -1, alphaCertified assumes that the polynomial system defines a real
map. Otherwise, the value of REALITYCHECK instructs alphaCertified on which tests to
perform to determine if the polynomial system defines a real map If REALITYCHECK is 0,
alphaCertified only checks to see if all of the coefficients are real. If REALITYCHECK is 1,
alphaCertified checks the coefficients as well as checking to see if the polynomial system, as
a set, is invariant under conjugation.

• REALITYTEST

If REALITYTEST is 0, the local approach for determining reality of associated solutions
presented in [4] is used. If REALITYTEST is 1, the global approach presented in [4] is used.

14


	Introduction to alphaCertified
	Compiling alphaCertified
	Using alphaCertified
	Polynomial systems
	Input points
	Configuration settings
	Running alphaCertified

	Output of alphaCertified
	Performing Newton iterations using alphaCertified
	Maple interface for alphaCertified
	alphaCertified
	defaultSettings
	loadOutput
	printPoints
	printPolynomialSystem
	printSettings

	Bibliography
	Configurations

