Semialgebraic Splines

SIAM Minisymposium on
Multivariate Splines and Algebraic Geometry 2 August 2017

Work with Michael DiPasquale and Lanyin Sun

Motivating Goals (for Me)

I: Compute dimensions of splines spaces on a semi-algebraic cell complex, to illustrate some phenomena not observed in traditional splines on simplicial or polyhedral complexes.

II: Learn something about splines and algebraic geometry.
Definition: A (basic) semialgebraic set is one of the form

$$
\left\{x \in \mathbb{R}^{2} \mid h_{i}(x) \geq 0, \text { for } i=1, \ldots, m\right\}
$$

where h_{1}, \ldots, h_{m} are polynomials.

Simplicial Complex

Complex with Semialgebraic Cells

Semialgebraic Splines

A semialgebraic spline is a function that is piecewise a polynomial with respect to a complex Δ whose cells are semialgebraic sets.
$C_{d}^{r}(\Delta)$: vector space of splines on Δ of degree $\leq d$ and smoothness r.
Consider planar complexes Δ with a single interior vertex, v, and whose edges are defined by polynomials g_{1}, \ldots, g_{N} (with $g_{i}(v)=0$), where $\operatorname{deg}\left(g_{i}\right)=n_{i}\left(\ln\right.$ our examples here, $N=3$ and $\left.n_{i}=2\right)$.

Set $S:=\mathbb{R}[x, y, z]$ and let $J(v):=\left\langle g_{i} \mid i=1, \ldots, N\right\rangle$, a homogeneous ideal. The same homological algebra as for classical splines on a simplicial complex yields

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\sum_{i=1}^{N}\binom{d-(r+1) n_{i}+2}{2}+\operatorname{dim}(S / J(v))_{d}
$$

Pencils

Suppose that g_{1}, \ldots, g_{N} all have degree n and form a pencil (dimension of linear span is 2). Suppose they define s distinct curves in \mathbb{R}^{2}. Set

$$
\begin{gathered}
t:=\min \{s, r+2\}, \quad a:=\left\lfloor\frac{r+1}{t-1}\right\rfloor \\
s_{1}:=(t-1) a+t-r-2, s_{2}:=r+1-(t-1) a .
\end{gathered}
$$

Theorem. $\operatorname{dim} C_{d}^{r}(\Delta)$ equals $\quad\binom{d+2}{2}+$

$$
(N-t)\binom{d-(r+1) n+2}{2}+s_{1}\binom{d-(r+1+a) n+2}{2}+s_{2}\binom{d-(r+2+a) n+2}{2},
$$

where $\binom{a}{b}=0$ is zero if $a<b$. For $d>(r+2+a) n+1$ this is

$$
N\binom{d-(r+1) n+2}{2}+n^{2}\left(\binom{a+r+2}{2}-t\binom{a+1}{2}\right) .
$$

Consequently, the dimension of the spline space does not depend upon any real geometry of the curves underlying the edges. They define n^{2} points in the complex projective plane, counted with multiplicity.

Pencils, continued

Theorem. For $d>(r+2+a) n+1, \operatorname{dim} C_{d}^{r}(\Delta)$ is

$$
N\binom{d-(r+1) n+2}{2}+n^{2}\left(\binom{a+r+2}{2}-t\binom{a+1}{2}\right)
$$

$\operatorname{dim} C_{d}^{r}(\Delta)$ is independent of the real geometry of the edge curves.

Four real points

Two double points

Two real and two complex points

A real point and a triple point at infinity

Distinct Tangents

Another extreme is when g_{1}, \ldots, g_{N} are smooth at v with distinct tangents, given by L_{1}, \ldots, L_{N}, respectively.

Theorem. For d sufficiently large, $\operatorname{dim} C_{d}^{r}(\Delta)$ equals

$$
\sum_{i=1}^{N}\binom{d-(r+1) n_{i}+2}{2}+\binom{a+r+2}{2}-t\binom{a+2}{2},
$$

where $t:=\min \{N, r+1\}$ and $a:=\left\lfloor\frac{r+1}{t-1}\right\rfloor$.
For this, we prove that the ideals $J(v)=\left\langle g_{i}^{r+1} \mid i=1, \ldots, N\right\rangle$ and $\left\langle L_{i}^{r+1} \mid i=1, \ldots, N\right\rangle$ define schemes (supported at v) with the same multiplicity, even though they are not isomorphic when r is large.
\rightsquigarrow Similar to the classical case of edges having distinct slopes.

Possible Extensions

If g_{1}, \ldots, g_{N} do not form a pencil, but vanish at another point, there are some subtleties.

As $\operatorname{dim} C_{d}^{r}(\Delta)=(\underset{2}{d-(r+1) 2+2})+\operatorname{dim}(S / J(v))_{d}$, we consider $\operatorname{dim}(S / J(v))_{d}$ for d large and $r=0,1,2,3,4$.

	0	1	2	3	4
I	3	9	21	36	57
II	3	10	22	38	60
III	3	11	23	40	63

