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Spectra of Schrödinger Operators

A fundamental problem in mathematical physics is to understand
the spectrum σ(L) of a Schrödinger operator L := −∆+ V acting
on complex-valued functions on Rd .

(∆ =
∑

i

∂2

∂x2
i

is the Laplacian and V : Rd → R is a potential.)

L is a selfadjoint operator on L2(Rd), σ(L) is a union of intervals
in R, giving the familiar structure of energy bands and band gaps.

Solid-state physics compels us to consider this in a crystal, where
∆ is perturbed to reflect a periodic anisotropy and V is periodic in
that V (x + a) = V (x) for x ∈ Rd and a ∈ Zd .

While spectral theory is typically approached via analysis,
discretizing brings it into the realm of algebraic geometry.
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Discretizing

Replace Rd by a graph Γ with vertices V(Γ) and edges E(Γ) having
a free action of Zd with finitely many orbits.

Two Z2-periodic graphs with fundamental domains shaded.

The potential V : V(Γ) → R is Zd -invariant and we have
Zd -invariant edge weights c : E(Γ) → R. Write c for (V , c).

The Schrödinger operator Lc acts on functions f : V(Γ) → R,
as a potential plus a perturbed graph Laplacian.

Lc f (u) := V (u)f (u) +
∑

(u,v)∈E(Γ)

c(u,v)(f (u)− f (v)) .
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Floquet (Fourier) Transform

Lc is self-adjoint on ℓ2(V(Γ),C) and commutes with the
Zd -action, so we may apply the Fourier transform.

T : unit complex numbers. Td : unitary characters for Zd .
For z ∈ Td , we have Zd ∋ a 7−→ za.

Fourier transform, f 7→ f̂ , where f̂ (a+u) = za f̂ (u), is a
linear isomorphism ℓ2(V(Γ))

∼
−→ L2(Td)⊕W , where

W ⊂ V(Γ) be a fundamental domain for the Zd -action.

The operator Lc retains its simple expression. For u ∈ W ,

Lc f̂ (u) = V (u)f̂ (u) +
∑

(u,a+v)∈E(Γ)

c(u,a+v)

(
f̂ (u)− za f̂ (v)

)
.

This is multiplication by a W ×W -matrix Lc(z) of Laurent
polynomials.

Frank Sottile, Texas A&M University Critical Points of Discrete Periodic Operators 3



Bloch Variety

The Bloch variety is the variety
defined by the dispersion relation
Dc(z , λ) := det(Lc(z)− λI ).

As Lc(z)
T = Lc(z

−1),
for z ∈ Td , Lc(z) is hermitian.

Thus the Bloch variety is a
|W |-sheeted cover of Td .

✛ :λ

σ(L)

σ(L)

T2

The spectrum σ(Lc) is the projection of Bloch variety to the λ-axis.

From a matrix of Laurent polynomials to an algebraic variety lying
over the spectrum, spectral theory of discrete periodic operators
may be studied through the lens of algebraic geometry.

I discuss some early results in this program.
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Some Questions From Physics

• Density of states: Spatial density of eigenfunctions at energy λ.

Kravaris: {eigenfunctions at energy λ} is a finitely generated
C[Zd ]-module and may be studied using free resolutions.

• Level set at λ of the Bloch Variety is a Fermi variety.
Natural physical questions ask for the irreducibility of Bloch
and Fermi varieties.

• Spectral edges conjecture: For general operators on Γ,
points on the Bloch Variety above endpoints of spectral bands
are nondegenerate extrema of λ.

Many physical properties rely upon this assumption (made by all
physicists), but it is largely unknown, even for operators on
discrete graphs.

• There are inverse problems and identifiability, and ....
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Complexify!

A first step is the algebraic relaxation of complexifying.

• Replace (V , c) by complex-valued functions:

V : V(Γ) → C c : E(Γ) → C

• Replace z ∈ Td by z ∈ (C×)d .

• z 7→ z−1 is a non-standard (twisted)
complex structure on (C×)d . (an
antiholomorphic involution).
As L(z)T = L(z−1),
when (V , c) are real, the dispersion
relation is stable under z 7→ z−1.

Thus the real Bloch variety is the real locus
of the complex Bloch variety.
The Newton polytope of Dc(z , λ) is centrally symmetric in z .
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Everything Old is New Again

Gieseker, Knörrer, Trubowitz (1993)
studied Schrödinger operator with
c(u,v) = 1 on the grid graph Z2 where
Z2 acts via aZ⊕bZ, with gcd(a, b) = 1.
We show this with a = 3 and b = 2.

They studied/determined:

• Density of states (gave a formula).

• Irreducibility of Bloch and Fermi varieties.

• Smoothness of Bloch and Fermi varieties.

• Used a toric compactification and the Torelli Theorem.

This was presented in a Bourbaki Lecture by Peters in 1992.
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Spectral Edges (Important Physics Assumption)
Each spectral edge is the image of a
critical point of λ on the Bloch variety.
The spectral edges conjecture posits that
generically, these critical points are
nondegenerate. A first step is to study
all critical points.

Implicit differentiation of 0 = D(z , λ)

gives 0 = ∂D
∂zi

+ ∂D
∂λ

∂λ
∂zi

. Thus equations for the critical points are:

D(z , λ) = z1
∂D

∂z1
= · · · = zd

∂D

∂zd
= 0 . (CPE )

All polynomials have support a subset of the Newton polytope
N (D) of the dispersion relation D(z , λ).

Kushnirenko∗ # Critical Points ≤ vol(N (D)).

∗ Monotonicity and (C×)d × Cλ.
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Toric Compactification

Let N (D) be the Newton polytope of
the dispersion relation D(z , λ).

Ambient space (C×)d × C of Bloch
variety is compactified by XN (D), the
projective toric variety of N (D).

The Critical Point Equations (CPE)
correspond to a linear section of XN (D)

Fact: # Critical Points < vol(N (D)) if and only if there are
solutions to CPE on boundary

∂XN (D) := XN (D) r ((C×)d × C) .

Let BV be the compactified Bloch variety in XN (D).
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Faces of XN (D)

Each face F ofN (D) contributes a torus orbit
OF to XN (D).

N (D) and its base give (C×)d × C.

∂XN (D) =
∐

OF , where F ( N (D) is not
its base.

• F vertical =⇒ CPE have solutions on OF .
(zη∇η(D|F ) = (η·F )D|F for η normal to F .)

• If F is not vertical, then CPE have solutions on OF

⇐⇒ BV ∩ OF is singular.
(Quasi-homogeneity of facial form DF .)

Theorem. # critical points = vol(N (D)) ⇐⇒ N (D) has no
vertical faces and BV ∩ ∂XN (D) is smooth.
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Dense Periodic Graphs

A Zd -periodic graph Γ is dense if it has maximally many edges,
given its combinatorial structure.

Fix a fundamental domain W for Γ. Its support of Γ is the set
A(Γ) := {a ∈ Zd | ∃ an edge with endpoints in W and a+W }.

Ã This contains the support of entries in Lc(z).

Γ is dense if for all a ∈ A(Γ), the restriction to W ∪ (a+W ) is a
complete graph.

Every graph embedds into a minimal dense graph

A(Γ)

Frank Sottile, Texas A&M University Critical Points of Discrete Periodic Operators 11



Critical Points of Dense Periodic Operators

Let E be the set of Zd -orbits of edges in Γ.

Y := CE × CW is the parameter space for operators on Γ.

For any graph Γ, we define a polytope N (Γ).

Theorem. There is a nonempty open subset U ⊂ Y consisting of
parameters c = (c ,V ) such that Dc has Newton polytope N (Γ).

Γ dense ⇒ N (Γ) is the pyramid
N (Γ) = |W | · conv(A(Γ) ∪ {(0d , 1)}).

For d = 2, 3 we may choose U such
that for c ∈ U, the Bloch variety is
smooth at infinity, and

# critical points = vol(N (Γ)) = |W |d+1vol(conv(A(Γ))).
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One Example

Easy Fact: A critical point is regular ⇐⇒ it is a nonsingular point
on Bloch variety =⇒ it is nondegenerate.

Consider the Z2-periodic dense graph Γ shown below with its
support and Newton polytope.

Independent Macaulay2 and Singular calculations at (random)
parameters c = (c ,V ) find a Bloch variety with
64 = 23 · 8 = vol(N (Γ)) regular critical points, which implies the
spectral edges conjecture for Γ. (I can explain, if you want.)
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219 Examples

Consider the graph Γ with support and Newton polytope

Calculations find a Bloch variety with 162 = 33 · 6 = vol(N (Γ))
regular critical points.

Γ is not dense—it is missing 6 edges in each direction →, ↑, ր,
and one in fundamental domain.

N (Γ) equals the Newton polytope of dense graph. Monotonicity
implies the spectral edges conjecture for all 219 graphs lying
beween Γ and its corresponding dense graph.
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Future Directions

(With Faust, Garćıa-Lopez, Shipman, Robinson, ....)

• Toric compactifications, desingularizations, extend Lc(z) to
boundary, and beyond.

• How do N (Γ), # critical points, etc. depend on Γ?

• Implication of homological invariants of Lc(z) (or its extension) for
spectral theory?

• Parameter identification: How much do Bloch and Fermi varieties
determine Γ and parameters (c ,V )?

• Spectral edges conjecture in dimensions 2 and 3; treating
singularities.

• Up coming ICERM Hot Topics Workshop, other workshops in the
planning. (Interested?)
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