Fermi Isospectrality

Minisymposium on Mathematical Physics and Graph Theory

5 November 2022

by

Work with Matthew Faust and Wencai Liu

Frank Sottile

Supported by NSF grant DMS-2201005

 bex^2

C

adcfx

Floquet and Fermi Varieties

A Schrödinger operator $H = \Delta + P$ on a graph $\Gamma = (V, E)$ acts on $\mathbb{R}^V := \{f : V \to \mathbb{R}\}$ with Δ a second order difference operator and P a potential. For $f \in \mathbb{R}^V$ and $v \in V$, we have

$$(Hf)(v) = \sum_{(u,v)\in E} c_{u,v}(f(v) - f(u)) + P(v)f(v).$$

Suppose \mathbb{Z}^d acts on Γ (and P, $\{c_{u,v}\}$) with finitely many orbits. For a character $z \colon \mathbb{Z}^d \to S^1$ ($z \in (S^1)^d$) let

$$\ell_{z}(\Gamma) := \{ f \in \mathbb{R}^{V} \mid f(v + \alpha) = z^{\alpha} f(v), v \in V, \alpha \in \mathbb{Z}^{d} \},\$$

which is a finite-dimensional vector space.

Then *H* restricts to H_z on $\ell_z(\Gamma)$. The *Floquet variety* is $\{(z, \lambda) \mid \exists f \in \ell_z(\Gamma) \mid H_z f = \lambda f\}$. A *Fermi variety* is a level set (λ fixed) of the Floquet variety.

Inverse Problem

To what extent do the Floquet/Fermi varieties determine the parameters (potential P and edge weights $\{c_{u,v}\}$)?

This question is algebraic, so we extend coefficients to \mathbb{C} $(f \in \mathbb{C}^V)$.

In appropriate coordinates, $(z, \lambda) \in (\mathbb{C}^{\times})^d \times \mathbb{C}$, the Floquet and Fermi varieties are algebraic hypersurfaces given by the vanishing of a single polynomial $F(z, \lambda)$.

A common test case for these questions is the grid graph Γ , which is \mathbb{Z}^d with a *box-periodic potential*:

 $P(u + q_i e_i) = P(u)$ where $q_1, \ldots, q_d \in \mathbb{N}$ and e_i is a standard basis vector, (and the same for $\{c_{u,v}\}$).

Let W be a fundamental domain for the action of $q_1\mathbb{Z}\oplus\cdots\oplus q_d\mathbb{Z}$.

Box-Periodic Floquet Isospectrality

Let Γ be the grid graph \mathbb{Z}^d and let the group acting on it be $q_1\mathbb{Z}\oplus\cdots\oplus q_d\mathbb{Z}\subset\mathbb{Z}^d$.

Kappeler, Duke & Adv. Appl. Math. (1988): Suppose that $d \ge 2$ and Δ is fixed.

- Knowing F_P(1, λ) (≤ N = q₁ ··· q_d spectral values) determines the potential P up to permutations. There are at most N! potentials Q with F_Q(1, λ) = F_P(1, λ).
- If Δ is the graph Laplacian, c_{u,v} = 1, and P ∈ C^W is generic, then F_P(z, λ) determines P.
 For z₁ ≠ z₂ in (C[×])^d, F_P(z₁, λ) and F_P(z₂, λ) together determine P.
- 3. When d = 2, if Δ a generic difference operator, then $F_P(z, \lambda)$ determines P, always.

Fermi Isospectrality

W. Liu, Fermi Isospectrality ..., arXiv:2106:03726. Definition. Two potentials $P, Q \in \mathbb{C}^W$ are Fermi isospectral if there is a $\lambda_0 \in \mathbb{C}$ such that

$$F_P(z,\lambda_0) = F_Q(z,\lambda_0).$$

Liu studied this for separable potentials, e.g. $P(u) = \sum_{i} P_{i}(u_{i})$ $u = (u_{1}, \dots, u_{d})$ (or a coarser decomposition)

He showed a number of rigidity results, all on the grid graph.

In
$$\ell_z(\Gamma)$$
, we may consider $f \in \mathbb{C}^W$.
 $H_z f(v) = P(v)f(v)$
 $+ \sum_{(u,v)\in E} c_{u,v}(f(v) - z_{u,v}f(u))$,

where $z_{u,v} = 1$, unless the edge leaves W, and then it is as indicated.

Example $q_1 = q_2 = 2$

Absorb the energy λ and $\sum_{u} c_{u,v}$ into P(v).

$$-H = \begin{pmatrix} -a & 1 + \frac{1}{y} & 1 + \frac{1}{x} & 0\\ 1 + y & -b & 0 & 1 + \frac{1}{x}\\ 1 + x & 0 & -c & 1 + \frac{1}{y}\\ 0 & 1 + x & 1 + y & -d \end{pmatrix}$$

$$F(x, y) = \det H \left(= F(x^{-1}, y^{-1})\right)$$
is

$$y^2 - 2x^{-1}y - y(ab + cd) - 2xy$$

$$+abcd - 2(ab + cd + ac + bd) + 4$$

$$-x(ac + bd) + x^2 + \cdots$$
(symmetric)

Fermi isospectral potentials Q s.t. $F_Q = F$ form a curve with 4 components. For each of 4 choices of fundamental domain and any $t \in \mathbb{C}^{\times}$, we get Fermi isospectral potential.

Example $q_1 = 2$ and $q_2 = 3$

The coefficients of $F(x, y) = \det H$ are affine combinations of

$$a + b + c + d + e + f$$
, $ad + be + cf$, $abc + def$,
 $adbe + adcf + becf$, and $abcdef$.

As there are five (invariant) polynomials and six parameters, sets of Fermi isospectral potentials have dimension at least 1.

In fact, they form a curve of degree 72.

Frank Sottile, Texas A&M University

Curves of Fermi Isospectral Potentials?

<u>Theorem</u>. For any q_1, q_2 both ≥ 2 , sets of Fermi isospectral potentials have dimension at least one.

Conjecture. For general potentials, this is a curve.

Our method is to study the coefficients as polynomials in the potential, seeking to show they are algebraically independent.

Very helpful is a graphical notation for terms in the expansion of the determinant; The potential appears only through fixed points.

This idea appeared in Harrison's talk

Frank Sottile, Texas A&M University

Fermi Isospectrality

Bibliography

- Berkolaiko and Kuchment, *Introduction to quantum graphs*, Mathematical Surveys and Monographs, vol. 186, AMS, 2013.
- Do, Kuchment, Sottile, *Generic properties of dispersion relation for discrete periodic operators*, J. Math. Phys., **61**, (2020).
- Faust, Sottile, *Critical points of discrete periodic operators*, arXiv/2206.13469.
- Kappeler, On Isospectral Potentials on Discrete Lattice I, Duke Math. Journal, **57** (1988), 135–150.
- Kappeler, *On isospectral potentials on a discrete lattice II*, Adv. in Appl. Math. **9** (1988), no. 4, 428–438.
- Liu, Fermi Isospectrality for Discrete Periodic Schrödinger Operators, arXiv/2106.03726.