New Conjectured Reality:
 Welschinger signs and the Wronski map

Nonlinear Algebra in Applications

SIAM TX-LA Meeting

University of Louisiana, Lafayette, 4 November 2023

Texas A\&M University sottile@tamu.edu

With Tom Brazelton and Stephen McKean

Frank Sottile

Nodes and Signs of Rational Plane Curves

An irreducible degree d plane curve C has arithmetic genus $\binom{d-1}{2}$.
\Rightarrow when C is rational $(g=0)$, it necessarily has singularities.
If C is also general, it has $\binom{d-1}{2}$ ordinary double points (\mathbb{X})
Real curves have three types of ordinary double points:

node

Definition: (Welschinger) The sign of a real rational normal curve C is $w(C):=(-1)^{\# \text { solitary points. }}$

Nodes and Signs of Rational Plane Curves

An irreducible degree d plane curve C has arithmetic genus $\binom{d-1}{2}$.
\Rightarrow when C is rational $(g=0)$, it necessarily has singularities.
If C is also general, it has $\binom{d-1}{2}$ ordinary double points (\mathbb{X})
Real curves have three types of ordinary double points:

node

conjugate pair of nodes

Definition: (Welschinger) The sign of a real rational normal curve C is $w(C):=(-1)^{\# \text { solitary points. }}$

Welschinger's Lower Bound

$$
w(C)=1 \backslash \quad w(C)=-1
$$

c. 1990, Kontsevich gave a formula for the number N_{d} of rational curves through $3 d-1$ general points in \mathbb{P}^{2}.

Welschinger c. 2002: If each of the $3 d-1$ points are real, then

$$
\sum_{C \text { real }} w(C)
$$

is independent of the choice of $3 d-1$ general real points.
IKS: This sum, W_{d} is at least $\frac{d!}{3}$ and $\lim _{d \rightarrow \infty} \frac{\log W_{d}}{\log N_{d}}=1$.

d	1	2	3	4	5
N_{d}	1	1	12	620	87304
W_{d}	1	1	8	240	18264

Parametrized Rational Curves From Grassmannians

The rational normal curve is
$\gamma: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}=\mathbb{P}\left(\mathbb{C}_{d}[s, t]\right)=\mathbb{P}(V)$.
A codimension $k+1$ plane H in $\mathbb{P}^{d}(H \in \mathbb{G})$ is the centre of a linear projection $\pi_{H}: \mathbb{P}^{d}-H \rightarrow \mathbb{P}(V / H)=: \mathbb{P}^{k}$.
The induced map $\gamma_{H}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{k}$ is a rational curve of degree d.
Singularities of γ_{H} correspond to the interaction of H with γ.
E.G. a flex (first k derivatives dependent) at $\gamma_{H}(s)$ corresponds to H meeting the k-plane $F_{k}(s)$ osculating γ at $s \in \mathbb{P}^{1}$.

Cusps and other ramification of γ_{H} correspond to Schubert conditions that H satisfies w.r.t osculating flags $F_{\bullet}(s)$.
(From the 19th c. and used by Eisenbud-Harris in the 1980's.)

The Wronski Map

Given $H \in \mathbb{G}$, we get the rational curve $\gamma_{H}=\left(f_{0}(s, t), \ldots, f_{k}(s, t)\right)$ (f_{i} homogeneous of degree d). The Wronskian of H is

$$
\mathrm{Wr}(H):=\operatorname{det}\left(\frac{\partial^{a}}{\partial s^{a}} \frac{\partial^{b}}{\partial t^{b}} f_{i}(s, t)\right)_{a+b=k}^{i=0 \ldots, k} \in \mathbb{P}\left(\mathbb{C}_{N}[s, t]\right) .
$$

Here, $N:=(k+1)(d-k)=\operatorname{dim} \mathbb{G}$.
Zeroes of $\mathrm{Wr}(H) \longleftrightarrow$ flexes of γ_{H}.
This Wronski map $\mathbb{G} \ni H \mapsto \operatorname{Wr}(H)$ is the restriction to \mathbb{G} of a linear projection

$$
\text { Wr }: \mathbb{P}\left(\wedge^{k+1} \mathbb{C}_{d}[s, t]\right) \longrightarrow \mathbb{P}\left(\mathbb{C}_{N}[s, t]\right)=: \mathbb{P}^{N}
$$

Easy fact: This is a finite map $\mathbb{G} \rightarrow \mathbb{P}^{N}$ of degree

$$
\operatorname{deg} \mathbb{G}=\frac{1!2!\cdots(d-k-1)!\cdot N!}{k!(k+1)!\cdots(d-1)!} .
$$

Maximally Inflected Curves

Theorem. (MTV) If $f \in \mathbb{P}^{N}$ has all roots real, then $\mathrm{Wr}^{-1}(f) \subset \mathbb{G}_{\mathbb{R}}$. If f also has distinct roots, it is a regular value of Wr.
(If $\mathrm{Wr}(H)$ has all roots real, then H is necessarily real.)
Definition. (Kharlamov-S.) If $\mathrm{Wr}(H)$ has all roots real, then γ_{H} is maximally inflected in that all flexes occur at real points.

These curves are beautiful; here are a few quintics.

New Conjectured Reality

Restricting Wr to the big cell of $\mathbb{G}_{\mathbb{R}}$ gives a proper map Wr: $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}(=$ monic real polynomials of degree $N)$.

Eremenko and Gabrielov computed its degree for all k and d (formula omitted).

Curious Conjecture: (Brazelton-S.) Fix $k=2$. When γ_{H} is maximally inflected with only flexes (e.g. $\mathrm{Wr}(H)$ has (all) N real roots), then $\operatorname{deg}_{H} \mathrm{Wr}=(-1)^{d} w\left(\gamma_{H}\right)$:

Sign of the Wronski map at $H=$ Welschinger sign of curve γ_{H}.
This is easily proven when $d=4$, and there is significant evidence for $d=5,6$. Computations, even for $d=6$ are challenging.

Obvious generalizations do not appear to hold.

Even More Reality, Experimentally

When $k=2, d=5$, and f has all $N=9$ roots real, then $\# \mathrm{Wr}^{-1}(f)=42$.
Define $S(j)_{f}:=\#\left\{H \in \mathrm{Wr}^{-1}(f) \mid \gamma_{H}\right.$ has j solitary points $\}$.
In each of $\gtrsim 10^{6}$ examples, we find that
$S_{5}=\left(S(j)_{f} \mid j=0 \ldots 6\right)=(0,0,0,12,18,9,3)$.
When $d=4$, we have $\# \mathrm{Wr}^{-1}(f)=5$, and it is a result of Kharlamov-S. that $S_{4}=(0,0,3,2)$ for any f.
$d=6$, we have $\# \mathrm{Wr}^{-1}(f)=462$, and in each of about 200 challenging examples, we find that

$$
S_{6}=(0,0,0,0,55,132,132,88,39,12,4)
$$

Another Reality Conjecture

Other ramifications may be imposed on plane curves: E.g. in a local parameter, the curve is $s \mapsto\left(s^{1+b}, s^{2+a}\right)$ with $a \geq b \geq 0$. (A simple flex is $(a, b)=(1,0)$.)

This ramification has order $a+b$, and the sum of all local ramifications of a curve is $N=3(d-2)$.
Assigning ramifications to points of $\mathbb{R} \mathbb{P}^{1} \simeq S^{1}$ gives a necklace, e.g. (cusp,flex,cusp,flex,cusp,flex) \neq (flex,flex,flex,cusp,cusp,cusp).

For example, there are three necklaces with three cusps (κ) and three flexes (ι):

Some Pictoral Data

(1,3,2,0)	(2,3,1,0)	(5,0,0,1)

Another Reality Conjecture

Conjecture. For a given necklace ν of ramification, the vector (\#curves with given ramification and i solitary points |i) is independent of the placement of the points of ramification.

This has been tested thousands of times for all ramification when $d=5$ and many times for $d=6$.

