16 February 2005
Instructor: F. Sottile

Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books.
Do persevere; partial credit will be given, and you are all good students.
Point totals are in Brackets next to each problem.

1. (a) [10] Give the precise $\epsilon-\delta$ definition of limit, that is $\lim _{x \rightarrow a} f(x)=l$ means:
(b) [10] Using the definition of limit, prove that $\lim _{x \rightarrow 2} 3 x+1=7$.
2. [15] The graph of a function f is shown to the right. What is its domain?
On different grids with labeled axes, draw graphs of the following functions
a) $y=f(x+2)$
b) $y=f(x)+2$
c) $y=-2 f(x)+2$

3. [20] Let \mathbf{v} be the vector $\langle-3,5\rangle$.
a) Compute $|\mathbf{v}|$.
b) Give a vector perpendicular to \mathbf{v}.
c) Compute the dot product $\mathbf{v} \cdot\langle 12,7\rangle$
d) Give a unit vector in the direction of \mathbf{v}.
4. [15] Evaluate the following limit, justifying each step using the limit laws.

$$
\lim _{x \rightarrow 3}\left(x^{3}+2 x^{2}+6\right)
$$

5. [20] Evaluate the following limit $\lim _{t \rightarrow 0} \frac{\sqrt{2-t}-\sqrt{2}}{t}$. There is no need to justify your steps.
6. [10] Recall that a function f is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.

Brief essay. Write a short paragraph explaining why the following statement is true. For example, if it uses a Theorem from the course, give a rough statement of the Theorem or its name (e.g. "Intermediate value Theorem"), and how it applies.

A polynomial function $P(x)$ is continuous at every real number a.

