Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books.
Do persevere; partial credit will be given, and you are all good students.
Point totals are in brackets next to each problem.

1. [10] State one version of the Fundamental Theorem of the Calculus.
2. [5] Using the Fundamental Theorem of the Calculus, give a formula for a function $F(\eta)$ whose derivative with respect to η is $\sqrt{1+\sin \sqrt{\eta}}$.
3. [10] Find the area between the x-axis and the curve $y=16-x^{4}$.
4. [20] A rectangular beam is to be cut from a cylindrical log of radius 10 inches.
(a) Show that the beam of maximal cross-sectional area is a
 square. (Do not formulate this with trigonometric functions.)
(b) Find the dimensions of the strongest beam that can be cut from this log, if the strength of a rectangular beam is proportional to the product of its width and the square of its depth.

5. [20] Calculate the following limits,

$$
\lim _{\xi \rightarrow 0} \frac{\sin ^{3}(\xi)}{\sin \left(\xi^{3}\right)} \quad \text { and } \quad \lim _{\zeta \rightarrow 0^{+}} \frac{\sqrt{1-\cos \zeta}}{\sin \zeta}
$$

6. [15] Find the extreme values of the function $f(\tau):=\tau-\sqrt{2} \sin \tau$ for τ in the interval $[\pi, \pi]$. Sketch the graph of the function and give the intervals over which it is increasing and over which it is decreasing.
7. [10] While bicycling into school one day, Frank passes the same SUV twice. Prove that at sometime on the way in the two vehicles had the same acceleration.
8. [10] Let f be a function defined on the interval $[\alpha, \beta]$. Indicate whether each of the following statements is true or false.
(a) If f is differentiable and increasing on (α, β), then $f^{\prime}(\gamma)>0$ for all $\gamma \in(\alpha, \beta)$.
(b) If f is increasing on (α, β), then the function $F(\kappa):=\int_{\alpha}^{\kappa} f(t) d t$ is increasing.
(c) If the function f acheives its maximum value on the interval $[\alpha, \beta]$ at a point $\mu \in(\alpha, \beta)$, then $f^{\prime}(\mu)=0$.
Ω. [5 pts extra credit] State the other version of the Fundamental Theorem of the Calculus.
