Math 151H
 Sections 201 and 202
 Final exam

Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books.
Do persevere; partial credit will be given, and you are all good students.
Point totals are in brackets next to each problem.

1. (a) [10] Suppose that f is a function and l, a are real numbers. Give the precise $\epsilon-\delta$ definition of limit. That is, give the definition of:"The function f approaches the limit l near $a^{\prime \prime}$.
(b) [20] Using this definition of limit, prove that $\lim _{x \rightarrow 4}\left(\frac{1}{x}\right)=\frac{1}{4}$.
2. [15] Suppose that $f(x)=x^{3}+x-1$. Use a Theorem from the class to show that $f(x)=0$ has a solution in the interval $[0,1]$. Does it have any more solutions? (Why or why not?)
3. [40] Compute the derivatives with respect to the variable x of the following functions.
(a) $\log _{5}(x)$
(b) $\sin \left(e^{x^{2}}\right)$
(c) $\sin (\arctan (x))$
(d) $x^{2}+5 x^{\sqrt{2}}$
(e) $x^{\sinh (x)}$
(f) $\sin \left(x^{2}+\sin \left(x^{2}+\sin \left(x^{2}\right)\right)\right)$
(h) $\sin \left(\frac{\cos x}{x}\right)$
(i) $\frac{\sin \left(x^{2}\right) \sin ^{2} x}{1+\sin x}$
4. [15] Prove the identity.

$$
\tanh (\ln x)=\frac{x^{2}-1}{x^{2}+1}
$$

5. [20] Let $f(x):=x^{4}-2 x^{2}-1$. Find the relative extrema and inflection points of f and determine the intervals on which it is increasing, decreasing, and has constant concavity.
6. [20] A particle is moving in the $x y$-plane in such a way that its position at time t is $\mathbf{r}(t)=(1+3 \cos t) \mathbf{i}+2 \sin t \mathbf{j}$. Find the particle's maximum speed.
7. [25] A street light is at the top of a 5 m tall pole. A man 2 m tall walks away from the pole with a speed of $2 \mathrm{~m} / \mathrm{sec}$ along a straight path. How fast is the tip of his shadow moving when he is 13 m from the pole? How fast is his shadow lengthening at that point?
8. [10] Find y^{\prime} when $x^{4}+y^{5}-6 x^{2} y^{3}=5$.
9. [10] Using only methods from this course, compute the following limit

$$
\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}
$$

10. [15] State both versions of the Fundamental Theorem of the Calculus, defining your terms (e.g. what is f ?) and using complete sentences (with formulas, of course).
