Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books. Do persevere; partial credit will be given, and you are all good students. Point totals are in brackets next to each problem.

1. (a) $[10]$ Suppose that $f$ is a function and $l, a$ are real numbers. Give the precise $\epsilon-\delta$ definition of limit. That is, give the definition of: "The function $f$ approaches the limit $l$ near $a^{\prime \prime}$.
(b) [25] Using this definition of limit, prove that $\lim _{x \rightarrow 4}\left(\frac{x}{3}+1\right)=\frac{7}{3}$.
2. [10] Let $\mathbf{v}:=\langle-7,24\rangle$ and $\mathbf{w}:=\langle 3,4\rangle$.
a) Compute $|\mathbf{v}|$.
b) Compute the scalar and vector projections of $\mathbf{v}$ along $\mathbf{w}$
3. [15] State the limit laws, besides $\lim _{x \rightarrow a} c=c$ and $\lim _{x \rightarrow a} x=a$, for $a, c \in \mathbb{R}$.

Given that $\lim _{x \rightarrow a} f(x)=2, \quad \lim _{x \rightarrow a} g(x)=5$, and $\lim _{x \rightarrow a} h(x)=11$, find the following limits that exist.
a) $\lim _{x \rightarrow a}[f(x)+h(x)]$.
b) $\lim _{x \rightarrow a} \frac{f(x)}{h(x)-g(x)}$.
4. [5] Evaluate $2-\frac{1}{3-\frac{1}{2-\frac{3}{2}}}$.
5. [5] Define $\csc (x)$ in terms of the unit circle. What is $\csc (\pi / 6)$ ?
6. [10] Show that $\sin (x+y) \sin (x-y)=\sin ^{2} x-\sin ^{2} y$.
7. [10] Give two radically different definitions for the number $\pi$.
8. [10] Find all real numbers $x$ such that $x^{4}-1>0$. Display your answer on a number line.

