Math 151H Second Test
 Sections 201 and 202

23 October 2008
Instructor: F. Sottile

Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books.
Do persevere; partial credit will be given.
Point totals are in brackets next to each problem.

1. [10] Suppose that a function f is defined in a neighborhood of a point a. What does it mean for f to be differentiable at a ? What is its derivative at a ?
2. [10] Let $f(\xi)=\sqrt{\xi}$ for $\xi>0$. Use the definition of derivative to compute $f^{\prime}(a)$, where $a>0$.
3. [15] Use implicit differentiation to compute γ^{\prime} and $\gamma^{\prime \prime}$ if we have $\sqrt{x}+\sqrt{\gamma}=5$. What are these derivatives when $x=9$ and $\gamma=4$?
4. [15] A runner runs around a circular track of radius 100 metres at a constant speed of 8 metres per second. The runner's coach is standing at a distance of 200 metres from the centre of the track. At what rate is the distance between them changing when the distance between them is 200 metres?
5. [10] Compute the trigonometric limit using methods from the course

$$
\lim _{\omega \rightarrow \frac{\pi}{4}} \frac{\sin \omega-\cos \omega}{\cos 2 \omega}
$$

6. [10] Let $f(v):=v^{2}-2$. Starting with the initial approximation of $x_{0}=1$ for the root $\sqrt{2}$ of f, use Newton's method twice to find the approximation x_{3} to 6 decimal places.
7. [30] Compute derivatives with respect to the variable x of the following functions.
($\alpha) \sqrt[5]{x \tan \left(x^{2} e^{x}\right)}$
(β) $\left(x+\frac{1}{x^{2}}\right)^{\sqrt{7}}$
$(\gamma) \csc \left(1+x+x^{3}\right)$
($\delta) \sin (x \cos (x))$
($\epsilon) \sec \left(e^{\tan x}\right)$
(广) $x^{e}+e^{x}$
(η) $\frac{\cos (1+x)}{\cot (1-x)}$
($\theta) \frac{3 x^{2}-x+1}{e+\sqrt{\sin \left(e^{2}\right)}}$
Ω. [5] (Literacy Bonus) In the 1980's, underfunding of California's schools led to a 60% decline in standardized test scores. Vigorous reforms led to a 70% increase in test scores during the 1990's. What was the net percentage change in test scores during these two decadees?
