Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books.
Do persevere; partial credit will be given, and you are all good students.
Point totals are in brackets next to each problem.

1. [10] State one version of the Fundamental Theorem of the Calculus.
2. [5] Using the Fundamental Theorem of the Calculus, give a formula for a function $F(\lambda)$ whose derivative with respect to λ is $\lambda+\sin \left(a^{2}+e^{2 \lambda} \sqrt{\lambda^{2}+3}\right)$.
3. [10] Find the area between the x-axis and an arc of the curve $y=\sin x$ between two consecutive zeroes of $\sin x$.
4. [15] Compute derivatives of the following functions

$$
f(x)=\arctan (\sqrt{x}), \quad f(x)=\operatorname{csch}\left(x^{x}\right), \quad \text { and } \quad f(x)=\sinh ^{-1}(\arcsin (x)) .
$$

5. [20] For the function $f(x)=x^{1 / 3}(x+3)^{2 / 3}$, find its local extrema, the intervals on which it is increasng or decreasing, its inflexion points, as well as its intervals of constant concavity.
6. [15] Of all the circular cylinders inscribed in a sphere of radius r, find the one of maximum volume.
7. [25] Evaluate (give a number or find an antiderivative, or both) the integrals

$$
\int_{1}^{4}\left(\sqrt{\mu}-\frac{2}{\sqrt{\mu}}\right) d \mu, \quad \int \frac{(\ln \alpha)^{3}}{\alpha} d \alpha, \quad \int_{0}^{1 / 2} \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x, \quad \text { and } \quad \int \sqrt[3]{\gamma^{3}+1} \gamma^{5} d \gamma
$$

Ω. [5 pts extra credit] State the other version of the Fundamental Theorem of the Calculus.

