
Chapter 1

Varieties

Algebraic geometry uses tools from algebra to study geometric sets called varieties, which
are the common zeroes of a collection of polynomials. We develop some basic notions of
algebraic geometry, perhaps the most fundamental being the dictionary between algebraic
and geometric concepts. The basic objects we introduce and concepts we develop will be
used throughout the book. These incude affine varieties, important notions from the
algebra-geometry dictionary, and projective varieties. We provide additional algebraic
background in the appendices and pointers to other sources of introductions to algebraic
geometry in the references provided at the end of the chapter.

1.1 Affine Varieties

Let K be a field, which for us will almost always be either the complex numbers C,
the real numbers R, or the rational numbers Q. These different fields have their indi-
vidual strengths and weaknesses. The complex numbers are algebraically closed; every
univariate polynomial has a complex root. Algebraic geometry works best when using an
algebraically closed field, and most introductory texts restrict themselves to the complex
numbers. However, quite often real number answers are needed in applications. Because
of this, we will often consider real varieties and work over R. Symbolic computation pro-
vides many useful tools for algebraic geometry, but it requires a field such as Q, which
can be represented on a computer. Much of what we do remains true for arbitrary fields,
such as the Gaussian rationals Q[i], or C(t), the field of rational functions in the variable
t, or finite fields. We will at times use this added generality.

Algebraic geometry is fundamentally about the interplay of algebra and geometry, with
its most basic objects the ring K[x1, . . . , xn] of polynomials in indeterminates x1, . . . , xn
with coefficients in K, and the space Kn of n-tuples a = (a1, . . . , an) of numbers from K.
We regard Kn as the domain of polynomials in K[x1, . . . , xn], which are then functions
from Kn → K. We make our main definition.
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12 CHAPTER 1. VARIETIES

Definition 1.1.1. An affine variety is the set of common zeroes of a collection of poly-
nomials. Given a set S ⊂ K[x1, . . . , xn] of polynomials, the affine variety defined by S is
the set

V(S) := {a ∈ Kn | f(a) = 0 for f ∈ S} .

This is a(n affine) subvariety of Kn or simply a variety or algebraic variety.

If X and Y are varieties with Y ⊂ X, then Y is a subvariety of X. In Exercise 2, you
will be asked to show that if S ⊂ T , then V(S) ⊃ V(T ).

The empty set ∅ = V(1) and affine space itself Kn = V(0) are varieties. Any linear or
affine subspace L of Kn is a variety. Indeed, an affine subspace L has an equation Ax = b,
where A is a matrix and b is a vector, and so L = V(Ax − b) is defined by the linear
polynomials which form the rows of the column vector Ax− b. An important special case
is when L = {b} is a point of Kn. Writing b = (b1, . . . , bn), then L is defined by the
equations xi − bi = 0 for i = 1, . . . , n.

Any finite subset Z ⊂ K1 is a variety as Z = V(f), where

f :=
∏

z∈Z

(x− z)

is the monic polynomial with simple zeroes in Z.

A non-constant polynomial f(x, y) in the variables x and y defines a plane curve

V(f) ⊂ K2. Here are the plane cubic curves V(f + 1
20
), V(f), and V(f − 1

20
), where

f(x, y) := y2 − x3 − x2.

A quadric is a variety defined by a single quadratic polynomial. The smooth quadrics in
K2 are the plane conics (circles, ellipses, parabolas, and hyperbolas in R2) and the smooth
quadrics in R3 are the spheres, ellipsoids, paraboloids, and hyperboloids. Figure 1.1 shows
a hyperbolic paraboloid V(xy + z) and a hyperboloid of one sheet V(x2 − x+ y2 + yz).

These examples, finite subsets of K1, plane curves, and quadrics, are varieties defined
by a single polynomial and are called hypersurfaces. Any variety is an intersection of
hypersurfaces, one for each polynomial defining the variety.

The set of four points {(−2,−1), (−1, 1), (1,−1), (1, 2)} in K2 is a variety. It is the
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Figure 1.1: Two hyperboloids.

intersection of an ellipse V(x2+y2−xy−3) and a hyperbola V(3x2−y2−xy+2x+2y−3).

(−1, 1)

(1, 2)

(−2,−1) (1,−1)

V(3x2 − y2 − xy + 2x+ 2y − 3)

V(x2 + y2 − xy − 3)

The quadrics of Figure 1.1 meet in the variety V(xy+z, x2−x+y2+yz), which is shown
on the right in Figure 1.2. This intersection is the union of two space curves. One is the
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Figure 1.2: Intersection of two quadrics.
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line x = 1, y + z = 0, while the other is the cubic space curve which has parametrization
t 7→ (t2, t,−t3). Observe that the sum of the degrees of these curves, 1 (for the line) and
3 (for the space cubic) is equal to the product 2 · 2 of the degrees of the quadrics defining
the intersection.

The intersection of the hyperboloid x2+(y− 3
2
)2−z2 = 1

4
with the sphere x2+y2+z2 = 4

is a singular space curve (the figure ∞ on the left sphere in Figure 1.3). If we instead
intersect the hyperboloid with the sphere centered at the origin having radius 1.9, then
we obtain the smooth quartic space curve drawn on the right sphere in Figure 1.3.

Figure 1.3: Quartics on spheres.

The product X × Y of two varieties X and Y is again a variety. Indeed, suppose that
X ⊂ Kn is defined by the polynomials f1, . . . , fs ∈ K[x1, . . . , xn] and that Y ⊂ Km is
defined by the polynomials g1, . . . , gt ∈ K[y1, . . . , ym]. Then X×Y ⊂ Kn×Km = Kn+m is
defined by the polynomials f1, . . . , fs, g1, . . . , gt ∈ K[x1, . . . , xn, y1, . . . , ym]. Given a point
x ∈ X, the product {x} × Y is a subvariety of X × Y which may be identified with Y
simply by forgetting the coordinate x.

The set Matn×n or Matn×n(K) of n × n matrices with entries in K is identified with
the affine space Kn2

, which may be written Kn×n. An interesting class of varieties are
linear algebraic groups, which are algebraic subvarieties of Matn×n that are closed under
multiplication and taking inverses. The special linear group is the set of matrices with
determinant 1,

SLn := {M ∈ Matn×n | detM = 1} ,
which is a linear algebraic group. Since the determinant of a matrix in Matn×n is a
polynomial in its entries, SLn is the variety V(det−1). We will later show that SLn is
smooth, irreducible, and has dimension n2 − 1. (We must first, of course, define these
notions.)

There is a general construction of other linear algebraic groups. Let gT be the transpose
of a matrix g ∈ Matn×n. For a fixed matrix M ∈ Matn×n, set

GM := {g ∈ SLn | gMgT =M} .

This a linear algebraic group, as the condition gMgT =M is n2 polynomial equations in
the entries of g, and GM is closed under matrix multiplication and matrix inversion.
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When M is skew-symmetric and invertible, GM is a symplectic group. In this case, n
is necessarily even. If we let Jn denote the n × n matrix with ones on its anti-diagonal,
then the matrix

[

0 Jn
−Jn 0

]

is conjugate to every other invertible skew-symmetric matrix in Mat2n×2n. We assume M
is this matrix and write Sp2n for the symplectic group.

When M is symmetric and invertible, GM is a special orthogonal group. When K is
algebraically closed, all invertible symmetric matrices are conjugate, and we may assume
M = Jn. For general fields, there may be many different forms of the special orthogonal
group. For instance, when K = R, let k and l be, respectively, the number of positive and
negative eigenvalues of M (these are conjugation invariants of M). Then we obtain the
group SOk,lR. We have SOk,lR ≃ SOl,kR.

Consider the two extreme cases. When l = 0, we may take M = In, and so we
obtain the special orthogonal group SOn,0 = SOn(R) of rotation matrices in Rn, which
is compact in the usual topology. The other extreme case is when |k − l| ≤ 1, and we
may take M = Jn. This gives the split form of the special orthogonal group which is not
compact.

When n = 2, consider the two different real groups:

SO2,0R :=

{[

cos θ sin θ
− sin θ cos θ

]

| θ ∈ S1

}

SO1,1R :=

{[

a 0
0 a−1

]

| a ∈ R×

}

Note that in the Euclidean topology SO2,0(R) is compact, while SO1,1(R) is not. The
complex group SO2(C) is also not compact in the Euclidean topology.

We also point out some subsets of Kn which are not varieties. The set Z of integers
is not a variety. The only polynomial vanishing at every integer is the zero polynomial,
whose variety is all of K. The same is true for any other infinite proper subset of K, for
example, the infinite sequence {1, 1

2
, 1
3
, . . . } is not a subvariety of K.

Other subsets which are not varieties (for the same reasons) include the unit disc in
R2, {(x, y) ∈ R2 | x2 + y2 ≤ 1} or the complex numbers with positive real part.

x

y

unit disc
�
�

�✒
1

1

−1

−1 R2

{z | Re(z) ≥ 0}✛

−i

0

i

−1 1

C

Sets like these last two which are defined by inequalities involving real polynomials are
called semi-algebraic. We will study them in Chapter 4.
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Exercises

1. Show that no proper nonempty open subset S of Rn or Cn is a variety. Here, we
mean open in the usual (Euclidean) topology on Rn and Cn. (Hint: Consider the
Taylor expansion of any polynomial that vanishes identically on S.)

2. Suppose that S ⊂ T are sets of polynomials in K[x1, . . . , xn]. Show that V(S) ⊃
V(T ).

3. Prove that in K2 we have V(y−x2) = V(y3−y2x2, x2y−x4).

4. Express the cubic space curve C with parametrization (t, t2, t3) in each of the fol-
lowing ways.

(a) The intersection of a quadric hypersurface and a cubic hypersurface.

(b) The intersection of two quadrics.

(c) The intersection of three quadrics.

5. Let Kn×n be the set of n× n matrices over K.

(a) Show that the set SL(n,K) ⊂ Kn×n of matrices with determinant 1 is an
algebraic variety.

(b) Show that the set of singular matrices in Kn×n is an algebraic variety.

(c) Show that the set GL(n,K) of invertible matrices is not an algebraic variety
in Kn×n. Show that GLn(K) can be identified with an algebraic subset of
Kn2+1 = Kn×n ×K1 via a map GLn(K)→ Kn2+1.

6. An n×n matrix with complex entries is unitary if its columns are orthonormal under
the complex inner product 〈z, w〉 = z · wt =

∑n

i=1 ziwi. Show that the set U(n) of
unitary matrices is not a complex algebraic variety. Show that it can be described
as the zero locus of a collection of polynomials with real coefficients in R2n2

, and so
it is a real algebraic variety.

7. Let Km×n be the set of m× n matrices over K.

(a) Show that the set of matrices of rank ≤ r is an algebraic variety.

(b) Show that the set of matrices of rank = r is not an algebraic variety if r > 0.

8. (a) Show that the set {(t, t2, t3) | t ∈ K} is an algebraic variety in K3.

(b) Show that the following sets are not algebraic varieties

(i) {(x, y) ∈ R2|y = sin x}
(ii) {(cos t, sin t, t) ∈ R3 | t ∈ R}
(iii) {(x, ex) ∈ R2 | x ∈ R}
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1.2 The algebraic-geometric dictionary

The strength and richness of algebraic geometry as a subject and source of tools for ap-
plications comes from its dual, simultaneously algebraic and geometric, nature. Intuitive
geometric concepts are tamed via the precision of algebra while basic algebraic notions
are enlivened by their geometric counterparts. The source of this dual nature is a cor-
respondence between algebraic concepts and geometric concepts that we refer to as the
algebraic-geometric dictionary.

We defined varieties V(S) associated to sets S ⊂ K[x1, . . . , xn] of polynomials,

V(S) = {x ∈ Kn | f(x) = 0 for all f ∈ S} .

We would like to invert this association. Given a subset Z of Kn, consider the collection
of polynomials that vanish on Z,

I(Z) := {f ∈ K[x1, . . . , xn] | f(z) = 0 for all z ∈ Z} .

The map I reverses inclusions so that Z ⊂ Y implies I(Z) ⊃ I(Y ).
These two inclusion-reversing maps

{Subsets S of K[x1, . . . , xn]}
V−−→←−−
I

{Subsets Z of Kn} (1.1)

form the basis of the algebra-geometry dictionary of affine algebraic geometry. We will
refine this correspondence to make it more precise.

An ideal is a subset I ⊂ K[x1, . . . , xn] which is closed under addition and under
multiplication by polynomials in K[x1, . . . , xn]. If f, g ∈ I then f + g ∈ I and if we
also have h ∈ K[x1, . . . , xn], then hf ∈ I. The ideal 〈S〉 generated by a subset S of
K[x1, . . . , xn] is the smallest ideal containing S. It is the set of all expressions of the form

h1f1 + · · ·+ hmfm

where f1, . . . , fm ∈ S and h1, . . . , hm ∈ K[x1, . . . , xn]. We work with ideals because if f ,
g, and h are polynomials and x ∈ Kn with f(x) = g(x) = 0, then (f + g)(x) = 0 and
(hf)(x) = 0. Thus V(S) = V(〈S〉), and so we may restrict V to the ideals of K[x1, . . . , xn].
In fact, we lose nothing if we restrict the left-hand-side of the correspondence (1.1) to the
ideals of K[x1, . . . , xn].

Lemma 1.2.1. For any subset S of Kn, I(S) is an ideal of K[x1, . . . , xn].

Proof. Let f, g ∈ I(S) be two polynomials which vanish at all points of S. Then f + g
vanishes on S, as does hf , where h is any polynomial in K[x1, . . . , xn]. This shows that
I(S) is an ideal of K[x1, . . . , xn].
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When S is infinite, the variety V(S) is defined by infinitely many polynomials. Hilbert’s
Basis Theorem tells us that only finitely many of these polynomials are needed.

Hilbert’s Basis Theorem. Every ideal I of K[x1, . . . , xn] is finitely generated.

We will prove this in Chapter 2. Be more specific!

Hilbert’s Basis Theorem implies many important finiteness properties of algebraic
varieties.

Corollary 1.2.2. Any variety Z ⊂ Kn is the intersection of finitely many hypersurfaces.

Proof. Let Z = V(I) be defined by the ideal I. By Hilbert’s Basis Theorem, I is finitely
generated, say by f1, . . . , fs, and so Z = V(f1, . . . , fs) = V(f1) ∩ · · · ∩ V(fs).

Example 1.2.3. The ideal of the cubic space curve C of Figure 1.2 with parametrization
(t2,−t, t3) not only contains the polynomials xy+z and x2−x + y2+yz, but also y2−x,
x2+yz, and y3+z. Not all of these polynomials are needed to define C as x2−x+y2+yz =
(y2−x)+ (x2+ yz) and y3+ z = y(y2−x)+ (xy+ z). In fact three of the quadrics suffice,

I(C) = 〈xy+z, y2−x, x2+yz〉 .

Lemma 1.2.4. For any subset Z of Kn, if X = V(I(Z)) is the variety defined by the

ideal I(Z), then I(X) = I(Z) and X is the smallest variety containing Z.

Proof. Set X := V(I(Z)). Then I(Z) ⊂ I(X), since if f vanishes on Z, it will vanish on
X. However, Z ⊂ X, and so I(Z) ⊃ I(X), and thus I(Z) = I(X).

If Y was a variety with Z ⊂ Y ⊂ X, then I(X) ⊂ I(Y ) ⊂ I(Z) = I(X), and so
I(Y ) = I(X). But then we must have Y = X for otherwise I(X) ( I(Y ), as is shown in
Exercise 3.

Thus we also lose nothing if we restrict the right-hand-side of the correspondence (1.1)
to the subvarieties of Kn. Our correspondence now becomes

{Ideals I of K[x1, . . . , xn]}
V−−→←−−
I

{Subvarieties X of Kn} . (1.2)

This association is not a bijection. In particular, the map V is not one-to-one and the
map I is not onto. There are several reasons for this.

For example, when K = Q and n = 1, we have ∅ = V(1) = V(x2−2). The problem here
is that the rational numbers are not algebraically closed and we need to work with a larger
field (for example Q(

√
2)) to study V(x2−2). When K = R and n = 1, ∅ 6= V(x2−2), but

we have ∅ = V(1) = V(1+ x2) = V(1+ x4). While the problem here is again that the real
numbers are not algebraically closed, we view this as a manifestation of positivity. The
two polynomials 1 + x2 and 1 + x4 only take positive values. When working over R (as
our interest in applications leads us to do so) positivity of polynomials plays an important
role, as we will see in later chapters.
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The problem with the map V is more fundamental than these examples reveal and
occurs even when K = C. When n = 1 we have {0} = V(x) = V(x2), and when n = 2, we
invite the reader to check that V(y−x2) = V(y2−yx2, xy−x3). Note that while x 6∈ 〈x2〉,
we have x2 ∈ 〈x2〉. Similarly, y − x2 6∈ V(y2 − yx2, xy − x3), but

(y − x2)2 = y2 − yx2 − x(xy − x3) ∈ 〈y2 − yx2, xy − x3〉 . (1.3)

In both cases, the lack of injectivity of the map V is because f and fN have the same set
of zeroes, for any positive integer N . For example, if f1, . . . , fs are polynomials, then the
two ideals

〈f1, f2, . . . , fs〉 and 〈f1, f 2
2 , f

3
3 , . . . , f

s
s 〉

both define the same variety, and if fN ∈ I(Z), then f ∈ I(Z).
We clarify this point with a definition. An ideal I ⊂ K[x1, . . . , xn] is radical if whenever

fN ∈ I for some positive integer N , then f ∈ I. The radical
√
I of an ideal I of

K[x1, . . . , xn] is

√
I := {f ∈ K[x1, . . . , xn] | fN ∈ I , for some N ≥ 1} .

You will show in Exercise 2 that
√
I is the smallest radical ideal containing I. For

example (1.3) shows that

√

〈y2 − yx2, xy − x3〉 = 〈y − x2〉 .

The reason for this definition is twofold: first, I(Z) is radical, and second, an ideal I and
its radical

√
I both define the same variety. We record these facts.

Lemma 1.2.5. For Z ⊂ Kn, I(Z) is a radical ideal. If I ⊂ K[x1, . . . , xn] is an ideal,

then V(I) = V(
√
I).

When K is algebraically closed, the precise nature of the correspondence (1.2) fol-
lows from Hilbert’s Nullstellensatz (null=zeroes, stelle=places, satz=theorem), another of
Hilbert’s foundational results in the 1890’s that helped to lay the foundations of algebraic
geometry and usher in twentieth century mathematics. We first state a weak form of the
Nullstellensatz, which describes the ideals defining the empty set.

Theorem 1.2.6 (Weak Nullstellensatz). Suppose that K is algebraically closed. If I is

an ideal of K[x1, . . . , xn] with V(I) = ∅, then I = K[x1, . . . , xn].

Let b = (b1, . . . , bn) ∈ Kn. Then {b} is defined by the linear polynomials xi − bi for
i = 1, . . . , n. A polynomial f is equal to the constant f(b) modulo the ideal mb := 〈x1 −
b1, . . . , xn − bn〉 generated by these polynomials, thus the quotient ring K[x1, . . . , xn]/mb

is isomorphic to the field K and so mb is a maximal ideal. In fact, these are the only
maximal ideals.
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Theorem 1.2.7. Every maximal m ideal of K[x1, . . . , xn] has the form mb for some b ∈
Kn.

Proof. We prove this when K is uncountable field, e.g. K = C. Then K[x1, . . . , xn]/m
is a field, L that contains K whose dimension as a K-vector space is at most countable
(it is spanned by the images of the monomials). Since K is algebraically closed, we have
L 6= K only if L contains an element that is transcendental over K. But then L contains a
subfield isomorphic to the field K(t) of rational functions in t. Consider the uncountable
subset of K(t),

{

1

t− a | a ∈ K

}

.

We claim that this set is linearly independent. If we had a linear dependency,

0 =
m
∑

i=1

λi
1

t− ai
,

then we could multiply it by (t−ai), simplify, and substitute t = ai to find that λi = 0, for
every i. Thus K(t) has uncountable dimension over K and so L cannot contain a subfield
isomorphic to K(t).

Thus we conclude that L = K. If bi ∈ K is the image of the variable xi, then we see
that m ⊃ mb. As these are maximal ideals, they are in fact equal.

Proof of the weak Nullstellensatz. We prove the contrapositive, if I ( C[x1, . . . , xn] is a
proper ideal, then V(I) 6= ∅. There is a maximal ideal mb with b ∈ Kn of C[x1, . . . , xn]
which contains I. But then

{b} = V(mb) ⊂ V(I) ,
and so V(I) 6= ∅. Thus if V(I) = ∅, we must have I = C[x1, . . . , xn], which proves the
weak Nullstellensatz.

The Fundamental Theorem of Algebra states that any nonconstant polynomial f ∈
C[x] has a root (a solution to f(x) = 0). We recast the weak Nullstellensatz as the
multivariate fundamental theorem of algebra.

Theorem 1.2.8 (Multivariate Fundamental Theorem of Algebra). If the polynomials

f1, . . . , fm ∈ C[x1, . . . , xn] generate a proper ideal of C[x1, . . . , xn], then the system of

polynomial equations

f1(x) = f2(x) = · · · = fm(x) = 0

has a solution in Kn.

We now deduce the strong Nullstellensatz, which we will use to complete the charac-
terization (1.2).
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Theorem 1.2.9 (Nullstellensatz). If I ⊂ C[x1, . . . , xn] is an ideal, then I(V(I)) =
√
I.

Proof. Since V(I) = V(
√
I), we have

√
I ⊂ I(V(I)). We show the other inclusion.

Suppose that we have a polynomial f ∈ I(V(I)). Introduce a new variable t. Then the
variety V(I, tf−1) ⊂ Kn+1 defined by I and tf−1 is empty. Indeed, if (a1, . . . , an, b) were
a point of this variety, then (a1, . . . , an) would be a point of V(I). But then f(a1, . . . , an) =
0, and so the polynomial tf − 1 evaluates to 1 (and not 0) at the point (a1, . . . , an, b).

By the weak Nullstellensatz, 〈I, tf−1〉 = C[x1, . . . , xn, t]. In particular, 1 ∈ 〈I, tf−1〉,
and so there exist polynomials f1, . . . , fm ∈ I and g, g1, . . . , gm ∈ C[x1, . . . , xn, t] such that

1 = f1(x)g1(x, t) + f2(x)g2(x, t) + · · ·+ fm(x)gm(x, t) + g(x, t)(tf(x)− 1) .

If we apply the substitution t = 1
f
, then the last term with factor tf − 1 vanishes and

each polynomial gi(x, t) becomes a rational function in x1, . . . , xn whose denominator is a
power of f . Clearing these denominators gives an expression of the form

fN = f1(x)G1(x) + f2(x)G2(x) + · · ·+ fm(x)Gm(x) ,

where G1, . . . , Gm ∈ C[x1, . . . , xn]. But this shows that f ∈
√
I, and completes the proof

of the Nullstellensatz.

Corollary 1.2.10 (Algebraic-Geometric Dictionary I). Over any field K, the maps V and

I give an inclusion reversing correspondence

{Radical ideals I of K[x1, . . . , xn]}
V−−→←−−
I

{Subvarieties X of Kn} (1.4)

with V(I(X)) = X. When K is algebraically closed, the maps V and I are inverses, and

this correspondence is a bijection.

Proof. First, we already observed that I and V are reverse inclusions and these maps
have the domain and range indicated. Let X be a subvariety of Kn. In Lemma 1.2.4 we
showed that X = V(I(X)). Thus V is onto and I is one-to-one.

Now suppose that K is algebraically closed. By the Nullstellensatz, if I is radical then
I(V(I)) = I, and so I is onto and V is one-to-one. This shows that I and V are inverse
bijections.

Corollary 1.2.10 is only the beginning of the algebraic-geometric dictionary. Many
natural operations on varieties correspond to natural operations on their ideals. The sum
I + J and product I · J of ideals I and J are defined to be

I + J := {f + g | f ∈ I and g ∈ J}
I · J := 〈f · g | f ∈ I and g ∈ J〉 .

Lemma 1.2.11. Let I, J be ideals in K[x1, . . . , xn] and set X := V(I) and Y := V(J) to
be their corresponding varieties. Then
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1. V(I + J) = X ∩ Y ,

2. V(I · J) = V(I ∩ J) = X ∪ Y ,

If K is algebraically closed, then we also have

3. I(X ∩ Y ) =
√
I + J , and

4. I(X ∪ Y ) =
√
I ∩ J =

√
I · J .

Example 1.2.12. It can happen that I · J 6= I ∩ J . For example, if I = 〈xy − x3〉 and
J = 〈y2 − x2y〉, then I · J = 〈xy(y − x2)2〉, while I ∩ J = 〈xy(y − x2)〉.

This correspondence will be further refined in Section 1.3 to include maps between
varieties. Because of this correspondence, each geometric concept has a corresponding
algebraic concept, and vice-versa, when K is algebraically closed. When K is not alge-
braically closed, this correspondence is not exact. In that case we will often use algebra
to guide our geometric definitions.

Exercises

1. Verify the claim in the text that the smallest ideal containing a set S ⊂ K[x1, . . . , xn]
of polynomials consists of all expressions of the form

h1f1 + · · ·+ hmfm

where f1, . . . , fm ∈ S and h1, . . . , hm ∈ K[x1, . . . , xn].

2. Let I be an ideal of K[x1, . . . , xn]. Show that

√
I := {f ∈ K[x1, . . . , xn] | fN ∈ I, for some N ∈ N}

is an ideal, is radical, and is the smallest radical ideal containing I.

3. If Y ( X are varieties, show that I(X) ( I(Y ).

4. Suppose that I and J are radical ideals. Show that I ∩ J is also a radical ideal.

5. Give radical ideals I and J for which I + J is not radical.

6. Let I be an ideal in K[x1, . . . , xn]. Prove or find counterexamples to the following
statements. Make your assumptions clear.

(a) If V(I) = Kn then I = 〈0〉.
(b) If V(I) = ∅ then I = K[x1, . . . , xn].



1.2. THE ALGEBRAIC-GEOMETRIC DICTIONARY 23

7. Give two algebraic varieties Y and Z such that I(Y ∩ Z) 6= I(Y ) + I(Z).

8. (a) Let I be an ideal of K[x1, . . . , xn]. Show that if K[x1, . . . , xn]/I is a finite
dimensional K-vector space then V(I) is a finite set.

(b) Let J = 〈xy, yz, xz〉 be an ideal in K[x, y, z]. Find the generators of I(V(J)).
Show that J cannot be generated by two polynomials in K[x, y, z]. Describe
V (I) where I = 〈xy, xz − yz〉. Show that

√
I = J .

9. Let f, g ∈ K[x, y] be polynomials without a common factor. Use Exercise 8(a) to
show that V(f) ∩ V(g) is a finite set.

10. Prove that there are three points p, q, and r in K2 such that

√

〈x2 − 2xy4 + y6, y3 − y〉 = I({p}) ∩ I({q}) ∩ I({r}) .

Show directly that the ideal 〈x2 − 2xy4 + y6, y3 − y〉 is not radical.
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1.3 The algebrac-geometric dictionary II

We strengthen the algebra-geometry dictionary of Section 1.2 in two ways. We first
replace affine space Kn by an affine variety X and the polynomial ring by the ring K[X]
of regular functions on X and establish a correspondence between subvarieties of X and
radical ideals of K[X]. Next, we establish a correspondence between regular maps of
varities and homomorphisms of their coordinate rings.

Let X ⊂ Kn be an affine variety and suppose that K is infinite. Any polynomial
function f ∈ K[x1, . . . , xn] restricts to give a regular function on X, f : X → K. We may
add and multiply regular functions, and the set of all regular functions on X forms a ring,
K[X], called the coordinate ring of the affine variety X or the ring of regular functions
on X. The coordinate ring of an affine variety X is a basic invariant of X, which we will
show is in fact equivalent to X itself.

The restriction of polynomial functions on Kn to regular functions on X defines a
surjective ring homomorphism K[x1, . . . , xn] ։ K[X]. The kernel of this restriction ho-
momorphism is the set of polynomials that vanish identically on X, that is, the ideal
I(X) of X. Under the correspondence between ideals, quotient rings, and homomor-
phisms, this restriction map gives an isomorphism between K[X] and the quotient ring
K[x1, . . . , xn]/I(X).

Example 1.3.1. The coordinate ring of the parabola y = x2 is K[x, y]/〈y− x2〉, which is
isomorphic to K[x], the coordinate ring of K1. To see this, observe that substituting x2

for y rewrites and polynomial f(x, y) as a polynomial g(x) in x alone, and y − x2 divides
the difference f(x, y)− g(x).

Parabola Cuspidal Cubic

On the other hand, the coordinate ring of the cuspidal cubic y2 = x3 isK[x, y]/〈y2−x3〉.
This ring is not isomorphic toK[x, y]/〈y−x2〉. Indeed, the element y2 = x3 has two distinct
factorizations into indecomposable elements, while polynomials f(x) in one variable always
factor uniquely.

LetX be a variety. Its coordinate ring K[X] = K[x1, . . . , xn]/I(X) is finitely generated
by the images of the variables xi. Since I(X) is radical, Exercise 4 implies that this
quotient ring has no nilpotent elements (elements f such that fM = 0 for some M). Such
a ring with no nilpotents is called reduced. When K is algebraically closed, these two
properties characterize coordinate rings of algebraic varieties.

Theorem 1.3.2. Suppose that K is algebraically closed. Then a K-algebra R is the coor-

dinate ring of an affine variety if and only if R is finitely generated and reduced.
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Proof. We need only show that a finitely generated reduced K-algebra R is the coordinate
ring of some affine variety. Suppose that the reducedK-algebraR has generators r1, . . . , rn.
Then there is a surjective ring homomorphism

ϕ : K[x1, . . . , xn] −։ R

given by xi 7→ ri. Let I ⊂ K[x1, . . . , xn] be the kernel of ϕ. This identifies R with
K[x1, . . . , xn]/I. Since R is reduced, we see that I is radical.

As K is algebraically closed, the algebraic-geometric dictionary of Corollary 1.2.10
shows that I = I(V(I)) and so R ≃ K[x1, . . . , xn]/I ≃ K[V(I)].

A different choice s1, . . . , sm of generators for R in this proof will give a different affine
variety with the same coordinate ring R. One goal of this section is to understand this
apparent ambiguity.

Example 1.3.3. The finitely generated K-algebra R := K[t] is the coordinate ring of
the affine line K. Note that if we set x := t + 1 and y := t2 + 3t, these generate R. As
y = x2 + x − 2, this choice of generators realizes R as K[x, y]/〈y − x2 − x + 2〉, which is
the coordinate ring of a parabola.

Among the coordinate rings K[X] of affine varieties are the polynomial algebras
K[x1, . . . , xn]. Many properties of polynomial algebras, including the algebraic-geometric
dictionary of Corollary 1.2.10 and the Hilbert Theorems hold for these coordinate rings
K[X].

Given regular functions f1, . . . , fm ∈ K[X] on an affine variety X ⊂ Kn, their set of
common zeroes

V(f1, . . . , fm) := {x ∈ X | f1(x) = · · · = fm(x) = 0} ,

is a subvariety of X. To see this, let F1, . . . , Fm ∈ K[x1, . . . , xn] be polynomials which
restrict to the functions f1, . . . , fm on X. Then

V(f1, . . . , fm) = X ∩ V(F1, . . . , Fm) ,

and we recall that intersecrtions of varieties are again varieties. As in Section 1.2, we may
extend this notation and define V(I) for an ideal I of K[X]. If Y ⊂ X is a subvariety
of X, then I(X) ⊂ I(Y ) and so I(Y )/I(X) is an ideal in the coordinate ring K[X] =
K[Kn]/I(X) of X. Write I(Y ) ⊂ K[X] for the ideal of Y in K[X].

Both Hilbert’s Basis Theorem and Hilbert’s Nullstellensätze have analogs for affine
varieties X and their coordinate rings K[X]. These consequences of the original Hilbert
Theorems follow from the surjection K[x1, . . . , xn] ։ K[X] and corresponding inclusion
X →֒ Kn.

Theorem 1.3.4 (Hilbert Theorems for K[X]). Let X be an affine variety. Then

1. Any ideal of K[X] is finitely generated.
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2. If Y is a subvariety of X then I(Y ) ⊂ K[X] is a radical ideal.

3. Suppose that K is algebraically closed. An ideal I of K[X] defines the empty set if

and only if I = K[X].

As in Section 1.2 we obtain a version of the algebraic-geometric dictionary between
subvarieties of an affine variety X and radical ideals of K[X]. The proofs are nearly the
same, so we leave them to the reader. For this, you will need to recall that ideals of a
quotient ring R/I all have the form J/I, where J is an ideal of R which contains I.

Theorem 1.3.5. Let X be an affine variety. Then the maps V and I give an inclusion

reversing correspondence

{Radical ideals I of K[X]}
V−−→←−−
I

{Subvarieties Y of X} (1.5)

with I injective and V surjective. When K is algebraically closed, the maps V and I are

inverse bijections.

We do not just study varieties, but also the maps between them.

Definition 1.3.6. A list f1, . . . , fm ∈ K[X] of regular functions on an affine variety X
defines a function

ϕ : X −→ Km

x 7−→ (f1(x), f2(x), . . . , fm(x)) ,

which we call a regular map.

Example 1.3.7. The elements t2, t,−t3 ∈ K[t] define the map K1 → K3 whose image is
the cubic curve of Figure 1.2.

The elements t2, t3 of K[t] define a map K1 → K2 whose image is the cuspidal cubic
that we saw earlier.

Let x = t2−1 and y = t3− t, which are elements of K[t]. These define a map K1 → K2

whose image is the nodal cubic curve V(y2 − (x3 + x2)) on the left below. If we instead
take x = t2 + 1 and y = t3 + t, then we get a different map K1 → K2 whose image is the
curve V(y2 − (x3 − x2)) on the right below.

In the curve on the right, the image of R1 is the arc, while the isolated or solitary point

is the image of the points ±
√
−1.
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Suppose that X is an affine variety and we have a regular map ϕ : X → Km given by
regular functions f1, . . . , fm ∈ K[X]. A polynomial g ∈ K[x1, . . . , xm] pulls back along ϕ
to give the regular function ϕ∗g, which is defined by

ϕ∗g := g(f1, . . . , fm) .

This element of the coordinate ring K[X] of X is the usual pull back of a function. For
x ∈ X we have

(ϕ∗g)(x) = g(ϕ(x)) = g(f1(x), . . . , fm(x)) .

The resulting map ϕ∗ : K[x1, . . . , xm] → K[X] is a homomorphism of K-algebras. Con-
versely, given a homomorphism ψ : K[x1, . . . , xm] → K[X] of K-algebras, if we set fi :=
ψ(xi), then f1, . . . , fm ∈ K[X] define a regular map ϕ with ϕ∗ = ψ.

We have just shown the following basic fact.

Lemma 1.3.8. The association ϕ 7→ ϕ∗ defines a bijection

{

Regular maps

ϕ : X → Km

}

←→
{

K-algebra homomorphisms

ψ : K[x1, . . . , xm]→ K[X]

}

In the examples that we gave, the image ϕ(X) of X under ϕ was contained in a
subvariety. This is always the case.

Lemma 1.3.9. Let X be an affine variety, ϕ : X → Km a regular map, and Y ⊂ Km a

subvariety. Then ϕ(X) ⊂ Y if and only if I(Y ) ⊂ kerϕ∗.

In particular, V(kerϕ∗) is the smallest subvariety of Km that contains the image ϕ(X)
of X under ϕ.

Proof. First suppose that ϕ(X) ⊂ Y . If f ∈ I(Y ) then f vanishes on Y and hence on
ϕ(X). But then ϕ∗f is the zero function, and so I(Y ) ⊂ kerϕ∗.

For the other direction, suppose that I(Y ) ⊂ kerϕ∗ and let x ∈ X. If f ∈ I(Y ), then
ϕ∗f = 0 and so 0 = ϕ∗f(x) = f(ϕ(x)). This implies that ϕ(x) ∈ Y , and so we conclude
that ϕ(X) ⊂ Y .

Definition 1.3.10. Affine varieties X and Y are isomorphic if there are regular maps
ϕ : X → Y and ψ : Y → X such that both ϕ ◦ ψ and ψ ◦ ϕ are the identity maps on Y
and X, repsectively. In this case, we say that ϕ and ψ are isomorphisms.

Corollary 1.3.11. Let X be an affine variety, ϕ : X → Km a regular map, and Y ⊂ Km

a subvariety. Then

(1) kerϕ∗ is a radical ideal.

(2) V(kerϕ∗) is the smallest affine variety containing ϕ(X).
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(3) If ϕ : X → Y , then ϕ∗ : K[Km]→ K[X] factors through K[Y ] inducing a homomor-

phism K[Y ]→ K[X].

(4) ϕ is an isomorphism of varieties if and only if ϕ∗ is an isomorphism of K-algebras.

We write ϕ∗ for the induced map K[Y ]→ K[X] of part (4).

Proof. For (1), suppose that fN ∈ kerϕ∗, so that 0 = ϕ∗(fN) = (ϕ∗(f))N . Since K[X]
has no nilpotent elements, we conclude that ϕ∗(f) = 0 and so f ∈ kerϕ∗.

Suppose that Y is an affine variety containing ϕ(X). By Lemma 1.3.9, I(Y ) ⊂ kerϕ∗

and so V(kerϕ∗) ⊂ Y . Statement (2) follows as we also have X ⊂ V(kerϕ∗).
For (3), we have I(Y ) ⊂ kerϕ∗ and so the map ϕ∗ : K[x1, . . . , xm] → K[X] factors

through the quotient map K[x1, . . . , xm] ։ K[x1, . . . , xm]/I(Y ) = K[Y ].
Statement (4) is immediate from the definitions.

Thus we may refine the correspondence of Lemma 1.3.8. Let X and Y be affine
varieties. Then the association ϕ 7→ ϕ∗ gives a bijective correspondence

{

Regular
maps

ϕ : X → Y

}

←→
{

K-algebra homomorphisms
ψ : K[Y ]→ K[X]

}

.

This map X 7→ K[X] from affine varieties to finitely generated reduced K-algebras
not only sends objects to objects, but it induces an isomorphism on maps between ob-
jects (reversing their direction however). In mathematics, such an association is called
a contravariant equivalence of categories. The point of this equivalence is that an affine
variety and its coordinate ring are different packages for the same information. Each one
determines and is determined by the other. Whether we study algebra or geometry, we
are studying the same thing.

The prototypical example of a contravariant equivalence of categories comes from
linear algebra. To a finite-dimensional vector space V , we may associate its dual space
V ∗. Given a linear transformation L : V → W , its adjoint is a map L∗ : W ∗ → V ∗. Since
(V ∗)∗ = V and (L∗)∗ = L, this association is a bijection on the objects (finite-dimensional
vector spaces) and a bijection on linear maps linear maps from V to W .

Exercises

1. Give a proof of Theorem 1.3.4.

2. Let V = V(y − x2) ⊂ K2 and W = V(xy − 1) ⊂ K2. Show that

K[V ] := K[x, y]/I(V ) ∼= K[t]

K[W ] := K[x, y]/I(W ) ∼= K[t, t−1]

Conclude that the hyperbola V (xy − 1) is not isomorphic to the affine line.
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3. Suppose that K is an infinite field. Show that f ∈ K[x1, . . . , xn] defines the zero
function f : Kn → K if and only if f is the zero polynomial. (Hint: One direction is
easy, and for the other, consider first the case when n = 1 and then use induction.)

4. Let I ⊂ K[x1, . . . , xn] be an ideal. Show that the factor ring K[x1, . . . , xn]/I has
nilpotent elements if and only if I is not a radical ideal.
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1.4 Projective varieties

Projective space and projective varieties are undoubtedly the most important objects in
algebraic geometry. We motivate projective space with an example.

Consider the intersection of the parabola y = x2 in the affine plane K2 with a line,
ℓ := V(ay + bx+ c). Solving these implied equations gives

ax2 + bx+ c = 0 and y = x2 .

There are several cases to consider.

(i) a 6= 0 and b2 − 4ac > 0. Then ℓ meets the parabola in two distinct real points.

(i′) a 6= 0 and b2 − 4ac < 0. While ℓ does not appear to meet the parabola, that is
because we have drawn the real picture, and ℓ meets it in two complex conjugate
points.

When K is algebraically closed, then cases (i) and (i′) coalesce to the case of a 6= 0
and b2−4ac 6= 0. These two points of intersection are predicted by Bézout’s Theorem
in the plane (Theorem 2.3.15).

(ii) a 6= 0 but b2−4ac = 0. Then ℓ is tangent to the parabola and we solve the equations
to get

a(x− b
2a
)2 = 0 and y = x2 .

Thus there is one solution, ( b
2a
, b2

4a2
). As x = b

2a
is a root of multiplicity 2 in the

first equation, it is reasonable to say that this one solution to our geometric problem
occurs with multiplicity 2.

(iii) a = 0. There is a single, unique solution, x = −c/b and y = c2/b2.

Suppose now that c = 0 and let b = 1. For a 6= 0, there are two solutions (0, 0) and
(− 1

a
, 1
a2
). In the limit as a→ 0, the second solution disappears off to infinity.

(i) (ii)

y = −x/a

(− 1
a
, 1
a2
)

(iii)

One purpose of projective space is to prevent this last phenomenon from occurring.
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Definition 1.4.1. The set of all 1-dimensional linear subspaces of Kn+1 is called n-dimen-

sional projective space and written Pn or Pn
K. If V is a finite-dimensional vector space, then

P(V ) is the set of all 1-dimensional linear subspaces of V . Note that P(V ) ≃ PdimV−1,
but there are no preferred coordinates for P(V ).

Example 1.4.2. The projective line P1 is the set of lines through the origin in K2. When
K = R, we see that the line x = ay through the origin intersects the circle V(x2 + (y −
1)2 − 1) in the origin and in the point (2a/(1 + a2), 2/(1 + a2)), as shown in Figure 1.4.
Identifying the x-axis with the origin and the lines x = ay with this point of intersection
gives a one-to-one map from P1

R to the circle, where the origin becomes the point at
infinity.

x

y
y = ax

(

2a
1+a2

, 2
1+a2

)

Figure 1.4: Lines through the origin meet the circle in a second point.

This definition of Pn leads to a system of global homogeneous coordinates for Pn. We
may represent a point, ℓ, of Pn by the coordinates [a0, a1, . . . , an] of any non-zero vector
lying on the one-dimensional linear subspace ℓ ⊂ Kn+1. These coordinates are not unique.
If λ 6= 0, then [a0, a1, . . . , an] and [λa0, λa1, . . . , λan] both represent the same point. This
non-uniqueness is the reason that we use rectangular brackets [. . . ] in our notation for
these homogeneous coordinates. Some authors prefer the notation [a0 : a1 : · · · : an].

Example 1.4.3. When K = R, note that a 1-dimensional subspace of Rn+1 meets the
sphere Sn in two antipodal points, v and −v. This identifies real projective space Pn

R with
the quotient Sn/{±1}, showing that Pn

R is a compact manifold in the usual topology.
Suppose that K = C. Given a point a ∈ Pn

C, after scaling, we may assume that
|a0|2 + |a1|2 + · · · + |an|2 = 1. Identifying C with R2, this is the set of points a on the
2n+ 1-sphere S2n+1 ⊂ R2n+2. If [a0, . . . , an] = [b0, . . . , bn] with a, b ∈ S2n+1, then there is
some ζ ∈ S1, the unit circle in C, such that ai = ζbi. This identifies P

n
C with the quotient

of S2n+1/S1, showing that Pn
C is a compact manifold. Since Pn

R ⊂ Pn
C, we again see that

Pn
R is compact.

Homogeneous coordinates of a point are not unique. Uniqueness may be restored,
but at the price of non-uniformity. Let Ai ⊂ Pn be the set of points [a0, a1, . . . , an] in
projective space Pn with ai 6= 0, but ai+1 = · · · = an = 0. Given a point a ∈ Ai, we may
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divide by its ith coordinate to get a representative of the form [a0, . . . , ai−1, 1, 0, . . . , 0].
These i numbers (a0, . . . , ai−1) provide coordinates for Ai, identifying it with the affine
space Ki. This decomposes projective space Pn into a disjoint union of n+1 affine spaces

Pn = Kn ⊔ · · · ⊔K1 ⊔K0 .

When a variety admits a decomposition as a disjoint union of affine spaces, we say that
it is paved by affine spaces. Many important varieties admit such a decomposition.

It is instructive to look at this closely for P2. Below, we show the possible positions of
a one-dimensional linear subspace ℓ ⊂ K3 with respect to the x, y-plane z = 0, the x-axis
z = y = 0, and the origin in K3.

✲

❅
❅❘ ❄

✁
✁☛

[x, y, 1]

K2 ℓ

z = 0 ✲

z = y = 0
❅
❅❘

[x, 1, 0]

K1 ℓ

[1, 0, 0]

❄

K0

ℓ

origin
✁

✁☛

There is also a scheme for local coordinates on projective space.

1. For i = 0, . . . , n, let Ui be the set of points a ∈ Pn in projective space whose ith
coordinate is non-zero. Dividing by this ith coordinate, we obtain a representative
of the point having the form

[a0, . . . , ai−1, 1, ai+1, . . . , an] .

The n coordinates (a0, . . . , ai−1, ai+1, . . . , an) determine this point, identifying Ui

with affine n-space, Kn. Every point of Pn lies in some Ui,

Pn = U0 ∪ U1 ∪ · · · ∪ Un .

When K = R or K = C, these Ui are coordinate charts for Pn as a manifold.

For any field K, these affine sets Ui provide coordinate charts for Pn.

2. We give a coordinate-free description of these affine charts. Let Λ: Kn+1 → K be a
linear map, and let H ⊂ Kn+1 be the set of points x where Λ(x) = 1. Then H ≃ Kn,
and the map

H ∋ x 7−→ [x] ∈ Pn

identifies H with the complement UΛ = Pn − V(Λ) of the points where Λ vanishes.

Example 1.4.4 (Probability simplex). This more general description of affine charts
leads to the beginning of an important application of algebraic geometry to statistics.
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Here K = R, the real numbers and we set Λ(x) := x0 + · · · + xn. If we consider those
points x where Λ(x) = 1 which have positive coordinates, we obtain the probability simplex

∆ := {(p0, p1, . . . , pn) ∈ Rn+1
+ | p0 + p1 + · · ·+ pn = 1} ,

where Rn+1
+ is the positive orthant, the points of Rn+1 with nonnegative coordinates. Here

pi represents the probability of an event i occurring, and the condition p0 + · · · + pn = 1
reflects that every event does occur.

Here is a picture when n = 2.

x

y

z

(.2, .3, .5)✟✟✟✟✙

ℓ = (.2t, .3t, .5t)

Rotate the picture and redraw.

We wish to extend the definitions and structures of affine algebraic varieties to projec-
tive space. One problem arises immediately: given a polynomial f ∈ K[x0, . . . , xn] and a
point a ∈ Pn, we cannot in general define f(a) ∈ K. To see why this is the case, for each
non negative integer d, let fd be the sum of the terms of f of degree d.1 We call fd the dth
homogeneous component of f . If [a0, . . . , an] and [λa0, . . . , λan] are two representatives of
a ∈ Pn, and f has degree m, then

f(λa0, . . . , λan) = f0(a0, . . . , an) + λf1(a0, . . . , an) + · · ·+ λmfm(a0, . . . , an) , (1.6)

since we can factor λd from every monomial (λx)α of degree d. Thus f(a) is a well-defined
number only if the polynomial (1.6) in λ is constant. That is, if and only if

fi(a0, . . . , an) = 0 i = 1, . . . , deg(f) .

In particular, a polynomial f vanishes at a point a ∈ Pn if and only if every homoge-
neous component fd of f vanishes at a. A polynomial f is homogeneous of degree d when
f = fd. We also use the term homogeneous form for a homogeneous polynomial.

Definition 1.4.5. Let f1, . . . , fm ∈ K[x0, . . . , xn] be homogeneous polynomials. These
define a projective variety

V(f1, . . . , fm) := {a ∈ Pn | fi(a) = 0, i = 1, . . . ,m} .
1Define degree!
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An ideal I ⊂ K[x0, . . . , xn] is homogeneous if whenever f ∈ I then all homogeneous
components of f lie in I. Thus projective varieties are defined by homogeneous ideals.
Given a subset Z ⊂ Pn of projective space, its ideal is the collection of polynomials which
vanish on Z,

I(Z) := {f ∈ K[x0, x1, . . . , xn] | f(z) = 0 for all z ∈ Z} .

In the exercises, you are asked to show that this ideal is homogeneous.
It is often convenient to work in an affine space when treating projective varieties.

The (affine) cone CZ ⊂ Kn+1 over a subset Z of projective space Pn is the union of the
one-dimensional linear subspaces ℓ ⊂ Kn+1 corresponding to points of Z. Then the ideal
I(X) of a projective variety X is equal to the ideal I(CX) of the affine cone over X.

Example 1.4.6. Let Λ := a0x0 + a1x1 + · · · + anxn be a linear form. Then V(Λ) is a
hyperplane. Let V ⊂ Kn+1 be the kernel of Λ which is an n-dimensional linear subspace.
It is also the affine variety defined by Λ. We have V(Λ) = P(V ).

The weak Nullstellensatz does not hold for projective space, as V(x0, x1, . . . , xn) = ∅.
We call this ideal, m0 := 〈x0, x1, . . . , xn〉, the irrelevant ideal. It plays a special role in the
projective algebraic-geometric dictionary.

Theorem 1.4.7 (Projective Algebraic-Geometric Dictionary). Over any field K, the maps

V and I give an inclusion reversing correspondence

{

Radical homogeneous ideals I of

K[x0, . . . , xn] properly contained in m0

}

V−−→←−−
I

{Subvarieties X of Pn}

with V(I(X)) = X. When K is algebraically closed, the maps V and I are inverses, and

this correspondence is a bijection.

We can deduce this from the algebraic-geometric dictionary for affine space (Corol-
lary 1.2.10), if we replace a subvariety X of projective space by its affine cone CX.

If we relax the condition that an ideal be radical, then the corresponding geometric
objects are projective schemes. This comes at a price, for many homogeneous ideals will
define the same projective scheme. This non-uniqueness comes from the irrelevant ideal,
m0. Recall the construction of colon ideals. Let I and J be ideals. Then the colon ideal

(or ideal quotient of I by J) is

(I : J) := {f | fJ ⊂ I} .

An ideal I ⊂ K[x0, x1, . . . , xn] is saturated if

I = (I : m0) := {f | xif ∈ I for i = 0, 1, . . . , n} .

The reason for this definition is that I and (I : m0) define the same projective scheme.
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Given a projective variety X ⊂ Pn, we may consider its intersection with any affine
open subset Ui = {x ∈ Pn | xi 6= 0}. For simplicity of notation, we will work with
U0 = {[1, x1, . . . , xn] | (x1, . . . , xn) ∈ Kn} ≃ Kn. Then

X ∩ U0 = {a ∈ U0 | f(a) = 0 for all f ∈ I(X)} .

and
I(X ∩ U0) = {f(1, x1, . . . , xn) | f ∈ I(X)} .

We call the polynomial f(1, x1, . . . , xn) the dehomogenization of the homogeneous polyno-
mial f . This shows that the ideal ofX∩U0 is obtained by dehomogenizing the polynomials
in the ideal of X. Note that f and xm0 f both dehomogenize to the same polynomial.

Conversely, given an affine subvariety Y ⊂ U0, we have its Zariski closure2 Y :=
V(I(Y )) ⊂ Pn. The relation between the ideal of the affine variety Y and homogeneous
ideal of its closure Y is through homogenization.

I(Y ) = {f ∈ K[x0, . . . , xn] | f |Y = 0}
= {f ∈ K[x0, . . . , xn] | f(1, x1, . . . , xn) ∈ I(Y ) ⊂ K[x1, . . . , xn]}
= {xdeg(g)+m

0 g(x1

x0

, . . . , xn

x0

) | g ∈ I(Y ), m ≥ 0} .

The point of this is that every projective variety X is naturally a union of affine
varieties

X =
n
⋃

i=0

(

X ∩ Ui

)

.

This gives a relationship between varieties and manifolds: Affine varieties are to varieties
what open subsets of Rn are to manifolds.

Could define quasi-projective varieties

2Use this notion earlier for closures of maps, but mention it is developed in Chapter 3.
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1.5 Coordinate rings and maps of projective varieties

Given a projective variety X ⊂ Pn, its homogeneous coordinate ring K[X] is the quotient

K[X] := K[x0, x1, . . . , xn]/I(X) .

If we set K[X]d to be the images of all degree d homogeneous polynomials, K[x0, . . . , xn]d,
then this ring is graded,

K[X] =
⊕

d≥0

K[X]d ,

where if f ∈ K[X]d and g ∈ K[X]e, then fg ∈ K[X]d+e. More concretely, we have

K[X]d = K[x0, . . . , xn]d/I(X)d ,

where I(X)d = I(X) ∩K[x0, . . . , xn]d.
This differs from the coordinate ring of an affine variety as its elements are not func-

tions on X, as we already observed that, apart from constant polynomials, elements of
K[x0, . . . , xn] do not give functions on Pn.

Maps of projective varieities need to be treated much more carefully

However, given two homogeneous polynomials f and g which have the same degree,
d, the quotient f/g does give a well-defined function, at least on Pn − V(g). Indeed, if
[a0, . . . , an] and [λa0, . . . , λan] are two representatives of the point a ∈ Pn and g(a) 6= 0,
then

f(λa0, . . . , λan)

g(λa0, . . . , λan)
=

λdf(a0, . . . , an)

λdg(a0, . . . , an)
=

f(a0, . . . , an)

g(a0, . . . , an)
.

It follows that if f, g ∈ K[X] with g 6= 0, then the quotient f/g gives a well-defined
function on X − V(g).

More generally, let f0, f1, . . . , fm ∈ K[X] be elements of the same degree with at least
one fi non-zero on X. These define a rational map

ϕ : X −−→ Pm

x 7−→ [f0(x), f1(x), . . . , fm(x)] .

This is defined at least on the set X − V(f0, . . . , fm). A second list g0, . . . , gm ∈ K[X]
of elements of the same degree (possible different from the degrees of the fi) defines the
same rational map if we have

rank

[

f0 f1 . . . fm
g0 g1 . . . gm

]

= 1 i.e. figj − fjgi ∈ I(X) for i 6= j .

The map ϕ is regular at a point x ∈ X if there is some system of representatives
f0, . . . , fm for the map ϕ for which x 6∈ V(f0, . . . , fm). The set of such points is an open
subset of X called the domain of regularity of ϕ. The map ϕ is regular if it is regular at
all points of X. The base locus of a rational map ϕ : X −→Y is the set of points of X at
which ϕ is not regular.
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Example 1.5.1. An important example of a rational map is a linear projection. Let
Λ0,Λ1, . . . ,Λm be linear forms. These give a rational map ϕ which is defined at points
of Pn − E, where E is the common zero locus of the linear forms Λ0, . . . ,Λm, that is
E = P(kernel(L)), where L is the matrix whose columns are the Λi.

The identification of P1 with the points on the circle V(x2 + (y − 1)2 − 1) ⊂ K2 from
Example 1.4.2 is an example of a linear projection. Let X := V(x2 +(y− z)2− z2) be the
plane conic which contains the point [0, 0, 1]. The identification of Example 1.4.2 was the
map

P1 ∋ [a, b] 7−→ [2ab, 2a2, a2 + b2] ∈ X .

Its inverse is the linear projection [x, y, z] 7→ [x, y].
Figure 1.5 shows another linear projection. Let C be the cubic space curve with

parametrization [1, t, t2, 2t3 − 2t] and π : P3−→L ≃ P1 the linear projection defined by
the last two coordinates, π : [x0, x1, x2, x3] 7→ [x3, x4]. We have drawn the image P1 in the
picture to illustrate that the inverse image of a linear projection is a linear section of the
variety (after removing the base locus). The center of projection is a line, E, which meets

π ✲

E ❍❍❥

B ❍❍❥

y, E

✄
✄✎

y✛

L✛

C❙
❙

❙♦

✻

π−1(y)

Figure 1.5: A linear projection π with center E.

the curve in a point, B.
Projective varieties X ⊂ Pn and Y ⊂ Pm are isomorphic if we have regular maps

ϕ : X → Y and ψ : Y → X for which the compositions ψ ◦ ϕ and ϕ ◦ ψ are the identity
maps on X and Y , respectively.

Exercises

1. A transition function ϕi,j expresses how to change from the local coordinates from
Ui of a point p ∈ Ui∩Uj to the local coordinates from Uj. Write down the transition
functions for Pn provided by the affine charts U0, . . . , Un.
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2. Show that an ideal I is homogeneous if and only if it is generated by homogeneous
polynomials.

3. Let Z ⊂ Pn. Show that I(Z) is a homogeneous ideal.

4. Show that a radical homogeneous ideal is saturated.

5. Show that the homogeneous ideal I(Z) of a subset Z ⊂ Pn is equal to the ideal
I(CZ) of the affine cone over Z.

6. Verify the claim in the text concerning the relation between the ideal of an affine
subvariety Y ⊂ U0 and of its Zariski closure Y ⊂ Pn:

I(Y ) = {xdeg(g)+m
0 g(x1

x0

, . . . , xn

x0

) | g ∈ I(Y ) ⊂ K[x1, . . . , xn], m ≥ 0} .

7. Let X ⊂ Pn be a projective variety and suppose that f, g ∈ K[X] are homogeneous
forms of the same degree with g 6= 0. Show that the quotient f/g gives a well-defined
function on X − V(g).

8. Show that if I is a homogeneous ideal and J is its saturation,

J =
⋃

d≥0

(I : md
0) ,

then there is some integer N such that

Jd = Id for d ≥ N .

9. Verify the claim in the text that if X ⊂ Pn is a projective variety, then its homoge-
neous coordinate ring is graded with

K[X]d = K[x0, . . . , xn]d/I(X)d .

1.6 Notes

Most of the material in this chapter is standard material within courses of algebraic
geometry or related courses. User-friendly, introductory texts to these topics include the
books of Beltrametti, Carletti, Gallarati, and Monti Bragadin [5], Cox, Little, O’Shea
[20], Holme [40], Hulek [42], Perrin [67], Smith, Kahanpää, Kekäläinen, and Traves [85].
Advanced, in-depth treatments from the viewpoint of modern, abstract algebraic geometry
can be found in the books of Eisenbud [25], Harris [35], Hartshorne [36], and Shafarevich
[84].


