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1. The Derivative

We will briefly review the ordinary derivative of one variable calculus, then try to
generalize this to the case of multivariate functions.

1.1. The single variable derivative. Let f : R → R be a function and a ∈ R be a
real number. Recall that f is differentiable at a with derivative Df(a) if

lim
h→0

f(a+ h)− f(a)

h
= Df(a).

This may be rewritten in the following manner:

lim
h→0

f(a+ h)− f(a)− hDf(a)

h
= 0.

Or, replacing h by its absolute value, |h|, in the denominator,

lim
h→0

f(a+ h)− f(a)− hDf(a)

|h| = 0. (∗)

Note that Df(a) is the unique number (if such a number exists) which satisfies (∗).

1.2. Multivariate functions: The case f : R → R
n. Now suppose that f : R → R

n.
Then f is an n-tuple of functions (f1, . . . , fn) where each fj : R → R. It is reasonable
to define the derivative of f at a ∈ R to be the n-tuple Df(a) = (Df1(a), . . . , Dfn(a)).
This satisfies the analog of (∗):

lim
h→0

f(a+ h)− f(a)− hDf(a)

|h| = 0, (∗∗)

as a limit of vectors in R
n. Here, if g : R → R

n is a vector valued function and L ∈ R
n,

then lim
t→0

g(t) = L means that for every 1 ≤ j ≤ n we have the limit of ordinary functions

lim
t→0

gj(t) = Lj, where gj is the jth component of g, and Lj the jth component of L.
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1.3. Multivariate functions: The case f : Rn → R. Suppose that f : Rn → R and
a ∈ R

n. What should be the derivative of f at a? We will reason by analogy with (∗∗).
In (∗∗), f(a) is a vector, |h| is the magnitude of h, and h 7→ h ·Df(a) defines a linear
map is a linear map from R → R

n.
For x = (x1, . . . , xn) ∈ R

n, we let ||x|| denote the length of the vector x, that is,

(x2

1
+ · · · + x2

n)
1

2 . We use || · || instead of | · | to differentiate between the multivariate
and single variable situations.
Definition: Let f : Rn → R and a ∈ R

n. Then the derivative of f at a is the linear
map Df(a) : Rn → R such that

lim
h→0

f(a+ h)− f(a)−Df(a)(h)

||h|| = 0.

Here for a function g : Rn → R, lim
h→0

g(h) = 0 means that ∀ǫ > 0 ∃δ > 0 such that if

||h|| < δ, then |g(h)| < ǫ.

2. Partial Derivatives

A linear map M : R
n → R determines a vector (m1, . . . ,mn) ∈ R

n such that if
x = (x1, . . . , xn) ∈ R

n, then M(x) = m1x1 + · · · + mnxn. Likewise a vector in R
n

determines a (unique) linear map. We call the components of this vector the components

of the linear map.

2.1. Definition. Let f : Rn → R. The components of the map Df(a) are called the

partial derivatives of f at a, and the jth component is written
∂f

∂xj

(a) or Djf(a).

We show how to compute these partial derivatives. Let ej be the vector with a 1 in

the jth place and 0’s elsewhere, (0, . . . , 0,
j

1, 0, . . . , 0).

2.2. Proposition.
∂f

∂xj

(a) = lim
t→0

f(a+ tej)− f(a)

t
.

In simple terms, we compute Djf(a) by treating the variables x1, . . . , x̂j, . . . , xn
1 as

constants and ‘taking the derivative with respect to the xj variable only’.

Proof: We know that

lim
h→0

f(a+ tej)− f(a)−Df(a)(tej)

||tej||
= 0.

Now, Df(a)(tej) = tDjf(a) and ||tej|| = |t|, so

lim
h→0

f(a+ tej)− f(a)− tDjf(a)

|t| = 0. (∗)

1
We often the use the shorthand x1, . . . , x̂j , . . . , xn to indicate that xj is omitted from the list:

x1, . . . , xj−1, xj+1, . . . , xn



MULTIVARIATE DERIVATIVES 3

Let g : R → R be defined by g(t) = f(a+ tej). Then by (∗), Dg(0) = Djf(a). But

Dg(0) = lim
t→0

g(t)− g(0)

t
= lim

t→0

f(a+ tej)− f(a)

t
.

3. The Continuity of Mixed Partial Derivatives

3.1. Theorem. Let D be an open subset of R2 and let f : D → R be a differentiable

function such that the mixed partial derivatives D1D2f and D2D1f exists on D, and let

(a, b) ∈ D be a point where they are both continuous. Then D1D2f(a, b) = D2D1f(a, b).

This is usually expressed as
∂2f

∂x∂y
=

∂2f

∂y∂x
.

Proof: Our plan is to show that for all ǫ > 0, |D1D2f(a, b)−D2D1f(a, b)| < ǫ.
Let ǫ > 0. Because both D1D2f and D2D1f are continuous at (a, b), there exists

δ > 0 such that if ||(a, b)− (x, y)|| < δ, then we have

|D1D2f(a, b)−D1D2f(x, y)| < ǫ/2

|D2D1f(a, b)−D2D1f(x, y)| < ǫ/2

Let 0 < h, k ≤ δ/
√
2. Then if a < c < a + h, and b < d < b + k, we have

||(a, b)− (c, d)|| < δ.
Define

(∗) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ h) + f(a, b)

G(y) = f(a+ h, y)− f(a, y)

F (x) = f(x, b+ k)− f(x, b)

Then

F (a+ h)− F (a) = (∗) = G(b+ k)−G(b).

F is continuous on [a, a+h] and differentiable on (a, a+h) and G is continuous on [b, b+k]
and differentiable on (b, b + k). By Lagrange’s Theorem (Mean Value Theorem), there
exists c, d′ with a < c < a+ h and b < d′ < b+ k such that

hDF (c) = (∗) = kDG(d′).

But

DF (c) = D1f(c, b+ k)−D1f(c, b)

DG(d′) = D2f(a+ h, d′)−D2f(a, d
′)

Applying Lagrange’s Theorem once again, we see that there exists c′, d with a < c′ <
a+ h and b < d < b+ k such that

DF (c) = kD2D1f(c, d) and DG(d′) = hD1D2f(c
′, d′)
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Thus
hkD2D1f(c, d) = (∗) = khD1D2f(c

′, d′)

and so D2D1f(c, d) = D1D2f(c
′, d′).

We use this to estimate |D1D2f(a, b)−D2D1f(a, b)|.
|D1D2f(a, b)−D2D1f(a, b)| ≤

|D1D2f(a, b)−D1D2f(c
′, d′)|+ |D2D1f(c, d)−D2D1f(a, b)|

< ǫ/2 + ǫ/2 = ǫ.

The figure below should help to visualize the situation of the proof.

(0,δ)

(c’,d’)

(c,d)

(a,b+k)

(a+h,b)(a,b)

(a+h,  b+k)

(δ,0)

4. Exercises

These are to be contemplated.

(1) Multivariate Derivative Give a reasonable definition for the derivative of a
function f : Rn → R

m.
(2) Multivariate Chain Rule If f : Rn → R

m and g : Rm → R
p, we have the

composition g ◦ f : Rn → R
p. What is D(g ◦ f)?

(3) Define f : R2 → R as follows: For (x, y) ∈ R
2−{(0, 0)}, set f(x, y) = xy(x2 − y2)

x2 + y2
,

and f(0, 0) = 0. Show that f is everywhere continuous, that D1f , D2f , D12f ,
and D21f exist everywhere, but that D12f(0, 0) 6= D21f(0, 0).
Reconcile this with the Theorem of §3.1.


