
Chapter 1

Varieties

Algebraic geometry uses tools from algebra to study geometric objects called (algebraic)
varieties, which are the common zeroes of a collection of polynomials. We develop some
basic notions of algebraic geometry, perhaps the most fundamental being the dictionary
between algebraic and geometric concepts. The basic objects we introduce and concepts
we develop will be used throughout the book. These include affine varieties, important
notions from the algebra-geometry dictionary, projective varieties, and maps between
varieties. We provide additional algebraic background in the appendices and pointers to
other sources of introductions to algebraic geometry in the references provided at the end
of the chapter.

1.1 Affine varieties

Let K be a field, which for us will almost always be either the complex numbers C, the
real numbers R, or the rational numbers Q. These different fields have their individual
strengths and weaknesses. The complex numbers are algebraically closed in that every
univariate polynomial has a complex root. Algebraic geometry works best over an al-
gebraically closed field, and many introductory texts restrict themselves to the complex
numbers. However, quite often real number answers are needed in applications. Because
of this, we will often consider real varieties and work over R. Symbolic computation pro-
vides many useful tools for algebraic geometry, but it requires a field such as Q, which
can be represented on a computer. Much of what we do remains true for arbitrary fields,
such as the Gaussian rationals Q[i], or C(t), the field of rational functions in the variable
t, or finite fields. We will at times use this added generality.

Algebraic geometry concerns the interplay of algebra and geometry, with its two most
basic objects being the ring K[x1, . . . , xn] of polynomials in variables x1, . . . , xn with co-
efficients in K, and the space Kn of n-tuples a = (a1, . . . , an) of numbers from K, called
affine space. Evaluating a polynomial f ∈ K[x1, . . . , xn] at points of K

n defines a function
f : Kn → K on affine space. We use these polynomial functions to define our primary
object of interest. We will often abbreviate K[x1, . . . , xn] as K[x], when it is clear from
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12 CHAPTER 1. VARIETIES

the context that we are working with multivariate polynomials (and not univariate poly-
nomials).

Definition 1.1.1. An affine variety is the set of common zeroes of some polynomials.
Given a set S ⊂ K[x] of polynomials, the affine variety defined by S is the set

V(S) := {a ∈ Kn | f(a) = 0 for f ∈ S} .

This is a subvariety of Kn or simply a variety or (affine) algebraic variety. When S consists
of a single polynomial f , then V(S) = V(f) is called a hypersurface.

If X and Y are varieties with Y ⊂ X, then Y is a subvariety of X. In Exercise 2, you
will be asked to show that if S ⊂ T , then V(S) ⊃ V(T ).

The empty set ∅ = V(1) and affine space itself Kn = V(0) are varieties. Any linear
or affine subspace L of Kn is a variety. Indeed, an affine subspace L has an equation
Ax = b, where A is a matrix and b is a vector, and so L = V(Ax − b) is defined by the
linear polynomials which form the entries of the vector Ax − b. An important special
case is when L = {b} is a point of Kn. Writing b = (b1, . . . , bn), then L is defined by the
equations xi − bi = 0 for i = 1, . . . , n.

Any finite subset Z ⊂ K1 is a variety as Z = V(f), where

f :=
∏

z∈Z

(x− z)

is the monic polynomial with simple zeroes at points of Z.
A non-constant polynomial f(x, y) in the variables x and y defines a plane curve

V(f) ⊂ K2. Here are the real plane cubic curves V(f + 1
20
), V(f), and V(f − 1

20
), where

f(x, y) := y2 − x2 − x3.

(1.1)

A quadric is a variety defined by a single quadratic polynomial. The smooth quadrics
in K2 are the plane conics (circles, ellipses, parabolas, and hyperbolas in R2) and the
smooth quadrics in R3 are the spheres, ellipsoids, paraboloids, and hyperboloids (a for-
mal definition of smooth variety is given in Section 3.4). Figure 1.1 shows a hyperbolic
paraboloid V(xy + z) and a hyperboloid of one sheet V(x2 − x+ y2 + yz).

These examples, finite subsets of K1, plane curves, and quadrics, are varieties de-
fined by a single polynomial and are called hypersurfaces. Any variety is an intersection
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Figure 1.1: Two hyperboloids.

of hypersurfaces, one for each polynomial defining the variety. The set of four points
{(−2,−1), (−1, 1), (1,−1), (1, 2)} in K2 is a variety. It is the intersection of an ellipse
V(x2 + y2 − xy − 3) and a hyperbola V(3x2 − y2 − xy + 2x+ 2y − 3).

(−1, 1)

(1, 2)

(−2,−1) (1,−1)

V(3x2 − y2 − xy + 2x+ 2y − 3)

V(x2 + y2 − xy − 3)

The quadrics of Figure 1.1 meet in the variety V(xy+z, x2−x+y2+yz), which is shown
on the right in Figure 1.2. This intersection is the union of two space curves. One is the
line x = 1, y + z = 0, while the other is the cubic space curve which has parametrization
t 7→ (t2, t,−t3). Observe that the sum of the degrees of these curves, 1 (for the line) and
3 (for the space cubic) is equal to the product 2 · 2 of the degrees of the quadrics defining
the intersection. We will have more to say on this in Section 3.6.

The intersection of the hyperboloid x2+(y− 3
2
)2−z2 = 1

4
with the sphere x2+y2+z2 = 4

centered at the origin with radius 2 is a singular space curve (the figure ∞ on the left
sphere in Figure 1.3). If we instead intersect the hyperboloid with the sphere centered at
the origin having radius 1.9, then we obtain the smooth quartic space curve drawn on the
right sphere in Figure 1.3.

The product X × Y of two varieties X and Y is again a variety. Indeed, suppose that
X ⊂ Kn is defined by the polynomials f1, . . . , fs ∈ K[x1, . . . , xn] and that Y ⊂ Km is
defined by the polynomials g1, . . . , gt ∈ K[y1, . . . , ym]. Then X×Y ⊂ Kn×Km = Kn+m is
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Figure 1.2: Intersection of two quadrics.

Figure 1.3: Quartics on spheres.

defined by the polynomials f1, . . . , fs, g1, . . . , gt ∈ K[x1, . . . , xn, y1, . . . , ym]. Given a point
x ∈ X, the product {x} × Y is a subvariety of X × Y which may be identified with Y
simply by forgetting the coordinate x.

The set Matm×n or Matm×n(K) ofm×nmatrices with entries in K is identified with the
affine space Kmn, which may be written Km×n. An interesting class of varieties are linear
algebraic groups, which are algebraic subvarieties of the space Matn×n square matrices
that are closed under multiplication and taking inverses. The special linear group is the
set of matrices with determinant 1,

SLn := {M ∈ Matn×n | detM = 1} ,

which is a linear algebraic group. Since the determinant of a matrix in Matn×n is a
polynomial in its entries, SLn is the variety V(det−1). We will later show that SLn is
smooth, irreducible, and has dimension n2 − 1. (We must first, of course, define these
notions.)

The general linear group GLn := {M ∈ Matn×n | detM 6= 0} at first does not appear
to be a variety as it is defined by an inequality. You will show in Exercise 7 that it may
be identified with the set {(t,M) ∈ K×Matn×n | t detM = 1}, which is a variety. When
n = 1, GL1 = {a ∈ K | a 6= 0} is the group of units (invertible elements) in K, written
K×.
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There is a general construction of other linear algebraic groups. Let gT be the transpose
of a matrix g ∈ Matn×n. For a fixed matrix M ∈ Matn×n, set

GM := {g ∈ SLn | gMgT = M} .

This a linear algebraic group, as the condition gMgT = M is n2 polynomial equations in
the entries of g, and GM is closed under matrix multiplication and matrix inversion.

When M is skew-symmetric and invertible, GM is a symplectic group. In this case, n
is necessarily even. If we let Jn denote the n×n matrix with 1s on its anti-diagonal, then
the matrix

(
0 Jn

−Jn 0

)

is conjugate to every other invertible skew-symmetric matrix in Mat2n×2n. We assume M
is this matrix and write Sp2n for the symplectic group.

When M is symmetric and invertible, GM is a special orthogonal group. When K is
algebraically closed, all invertible symmetric matrices are conjugate, and we may assume
M = Jn. For general fields, there may be many different forms of the special orthogonal
group. For instance, when K = R, let k and l be, respectively, the number of positive and
negative eigenvalues of M (these are conjugation invariants of M). Then we obtain the
group SOk,lR. We have SOk,lR ≃ SOl,kR.

Consider the two extreme cases. When l = 0, we may take M = In, and so we
obtain the special orthogonal group SOn,0 = SOn(R) of rotation matrices in Rn, which is
compact in the usual topology. The other extreme case is when |k − l| ≤ 1, and we may
take M = Jn. This is known as the split form of the special orthogonal group which is
not compact.

When n = 2, consider the two different real groups:

SO2,0R :=

{(
cos θ sin θ

− sin θ cos θ

)
| θ ∈ [0, 2π)

}

SO1,1R :=

{(
a 0
0 a−1

)
| a ∈ R×

}

Note that in the Euclidean topology (see Appendix A.2) SO2,0(R) is compact, while
SO1,1(R) is not. The complex group SO2(C) is also not compact in the Euclidean topology.

We point out some subsets of Kn which are not varieties. The set Z of integers is not
a variety. The same is true for any other infinite proper subset of K, for example, the
infinite sequence {1, 1

2
, 1
3
, . . . } is not a subvariety of R or of C.

Other subsets which are not varieties (for the same reasons) include the unit disc in
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R2, {(x, y) ∈ R2 | x2 + y2 ≤ 1} or the complex numbers with positive real part.

x

y

unit disc
¡

¡
¡✒

R2

{z | Re(z) ≥ 0}✛

−i

0

i

−1 1

C

Sets like these last two which are defined by inequalities involving real polynomials are
called semi-algebraic. We will study them in Chapter 5.

Exercises

1. Show that no proper nonempty open subset S of Rn or Cn is a variety. Here, we
mean open in the usual (Euclidean) topology on Rn and Cn. (Hint: Consider the
Taylor expansion of any polynomial that vanishes identically on S.)

2. Let S ⊂ T be sets of multivariate polynomials in K[x]. Show that V(S) ⊃ V(T ).

3. Show that any finite subset Z of Kn is a variety. (Hint: for a linear form Λ : Kn → K,
the polynomial

ΛZ :=
∏

z∈Z

(Λ(x)− Λ(z))

vanishes on Z. Show that there is a set L of linear forms such that the polynomials
ΛZ for Λ ∈ L define Z.) This may be too complicated

4. Prove that in K2 we have V(y−x2) = V(y3−y2x2, x2y−x4).

5. Show that the following sets are not algebraic varieties.

(i) Z ⊂ C and Z ⊂ R.

(ii) {(x, y) ∈ R2 | y = sin x}.
(iii) {(cos t, sin t, t) ∈ R3 | t ∈ R}.
(iv) {(x, ex) ∈ R2 | x ∈ R}.

6. Express the cubic space curve C with parametrization (t, t2, t3) for t ∈ K as a variety
in each of the following ways.

(a) The intersection of a quadric hypersurface and a cubic hypersurface.

(b) The intersection of two quadrics.

(c) The intersection of three quadrics.
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7. Let Kn×n be the set of n× n matrices over K.

(a) Show that the set SLn(K) ⊂ Kn×n of matrices with determinant 1 is an alge-
braic variety.

(b) Show that the set of singular matrices in Kn×n is an algebraic variety.

(c) Show that the set GLn(K) of invertible matrices is not an algebraic variety
in Kn×n. Show that GLn(K) can be identified with an algebraic subset of
Kn2+1 = Kn×n ×K1 via a map GLn(K) → Kn2+1.

8. An n×n matrix with complex entries is unitary if its columns are orthonormal under
the complex inner product 〈z, w〉 = z · wt =

∑n

i=1 ziwi. Show that the set U(n) of
unitary matrices is not a complex algebraic variety. Show that it can be described
as the zero locus of a collection of polynomials with real coefficients in R2n2

, and so
it is a real algebraic variety.

9. Let Km×n be the set of m× n matrices over K.

(a) Show that the set of matrices of rank at most r is an algebraic variety.

(b) Show that the set of matrices of rank exactly r is not an algebraic variety when
r > 0.

1.2 Varieties and Ideals

The strength and richness of algebraic geometry as a subject and source of tools for
applications comes from its dual, simultaneously algebraic and geometric, nature. In-
tuitive geometric concepts are tamed via the precision of algebra while basic algebraic
notions are enlivened by their geometric counterparts. The source of this dual nature
is a correspondence—in fact an equivalence—between algebraic concepts and geometric
concepts that we refer to as the algebra-geometry dictionary.

We defined varieties V(S) associated to sets S ⊂ K[x] of multivariate polynomials,

V(S) = {x ∈ Kn | f(x) = 0 for all f ∈ S} .

We would like to invert this association. Given a subset Z of Kn, consider the collection
of polynomials that vanish on Z,

I(Z) := {f ∈ K[x] | f(z) = 0 for all z ∈ Z} .

The map I reverses inclusions so that Z ⊂ Y implies I(Z) ⊃ I(Y ).
These two inclusion-reversing maps

{Subsets S of K[x]}
V−−→←−−
I

{Subsets Z of Kn} (1.2)
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form the basis of the algebra-geometry dictionary of affine algebraic geometry. We will
refine this correspondence to make it more precise.

An ideal is a subset I ⊂ K[x] which is closed under addition and under multiplication
by polynomials in K[x]. If f, g ∈ I then f + g ∈ I and if we also have h ∈ K[x], then
hf ∈ I. The ideal 〈S〉 generated by a subset S of K[x] is the smallest ideal containing S.
It is the set of all expressions of the form

h1f1 + · · ·+ hmfm

where f1, . . . , fm ∈ S and h1, . . . , hm ∈ K[x]. We work with ideals because if f , g, and h
are polynomials and x ∈ Kn with f(x) = g(x) = 0, then (f + g)(x) = 0 and (hf)(x) = 0.
Thus V(S) = V(〈S〉), and so we may restrict the map V of the correspondence (1.2)
to the ideals of K[x]. In fact, we lose nothing if we restrict the left-hand-side of the
correspondence (1.2) to the ideals of K[x].

Lemma 1.2.1. For any subset S of Kn, I(S) is an ideal of K[x].

Proof. Let f, g ∈ I(S) be polynomials which vanish at all points of S. Then f+g vanishes
on S, as does hf , where h is any polynomial in K[x]. This shows that I(S) is an ideal of
K[x].

When S is infinite, the variety V(S) is defined by infinitely many polynomials. Hilbert’s
Basis Theorem tells us that only finitely many of these polynomials are needed.

Hilbert’s Basis Theorem. Every ideal I of K[x] is finitely generated.

We will prove a stronger form of this (Theorem 2.2.10) in Chapter 2, but use it here.
Hilbert’s Basis Theorem implies important finiteness properties of algebraic varieties.

Corollary 1.2.2. Any variety Z ⊂ Kn is the intersection of finitely many hypersurfaces.

Proof. Let Z = V(I) be defined by the ideal I. By Hilbert’s Basis Theorem, I is finitely
generated, say by f1, . . . , fs, and so Z = V(f1, . . . , fs) = V(f1) ∩ · · · ∩ V(fs).
Example 1.2.3. The ideal of the cubic space curve C of Figure 1.2 with parametrization
(t2, t,−t3) not only contains the polynomials xy+z and x2−x + y2+yz, but also y2−x,
x2+yz, and y3+z. Not all of these polynomials are needed to define C as x2−x+y2+yz =
(y2−x)+ (x2+ yz) and y3+ z = y(y2−x)+ (xy+ z). In fact three of the quadrics suffice,

I(C) = 〈xy+z, y2−x, x2+yz〉 . ⋄
Lemma 1.2.4. For any subset Z of Kn, if X = V(I(Z)) is the variety defined by the

ideal I(Z), then I(X) = I(Z) and X is the smallest variety containing Z.

Proof. Set X := V(I(Z)). Then I(Z) ⊂ I(X), since if f vanishes on Z, it will vanish on
X. However, Z ⊂ X, and so I(Z) ⊃ I(X), and thus I(Z) = I(X).

If Y was a variety with Z ⊂ Y ⊂ X, then I(X) ⊂ I(Y ) ⊂ I(Z) = I(X), and so
I(Y ) = I(X). But then we must have Y = X for otherwise I(X) ( I(Y ), as is shown in
Exercise 4.
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Thus we also lose nothing if we restrict the right-hand-side of the correspondence (1.2)
to the subvarieties of Kn. Our correspondence now becomes

{Ideals I of K[x]}
V−−→←−−
I

{Subvarieties X of Kn} . (1.3)

This association is not a bijection. In particular, the map V is not one-to-one and the
map I is not onto. There are several reasons for this.

For example, when K = Q and n = 1, we have ∅ = V(1) = V(x2−2). The problem here
is that the rational numbers are not algebraically closed and we need to work with a larger
field (for example Q(

√
2)) to study V(x2−2). When K = R and n = 1, ∅ 6= V(x2−2), but

we have ∅ = V(1) = V(1+ x2) = V(1+ x4). While the problem here is again that the real
numbers are not algebraically closed, we view this as a manifestation of positivity. The
two polynomials 1 + x2 and 1 + x4 only take positive values. When working over R (as
our interest in applications leads us to do so) positivity of polynomials plays an important
role, as we will see in Chapters 6 and 7.

The problem with the map V is more fundamental than these examples reveal and
occurs even when K = C. When n = 1 we have {0} = V(x) = V(x2), and when n = 2, we
invite the reader to check that V(y−x2) = V(y2−yx2, xy−x3). Note that while x 6∈ 〈x2〉,
we have x2 ∈ 〈x2〉. Similarly, y − x2 6∈ V(y2 − yx2, xy − x3), but

(y − x2)2 = y2 − yx2 − x(xy − x3) ∈ 〈y2 − yx2, xy − x3〉 . (1.4)

These two cases reveal a source for lack of injectivity of the map V—the polynomials f
and fN have the same set of zeroes, for any positive integer N . For example, if f1, . . . , fs
are polynomials, then the two ideals

〈f1, f2, . . . , fs〉 and 〈f1, f 2
2 , f

3
3 , . . . , f

s
s 〉

both define the same variety, and for any Z ⊂ Kn, if fN ∈ I(Z), then f ∈ I(Z).
We clarify this point with a definition. An ideal I ⊂ K[x] is radical if whenever fN ∈ I

for some positive integer N , then f ∈ I. The radical
√
I of an ideal I of K[x] is

√
I := {f ∈ K[x] | fN ∈ I , for some N ≥ 1} .

You will show in Exercise 3 that
√
I is the smallest radical ideal containing I. For

example (1.4) shows that

√
〈y2 − yx2, xy − x3〉 = 〈y − x2〉 .

The reason for this definition is twofold: first, I(Z) is radical, and second, an ideal I and
its radical

√
I both define the same variety. We record these facts.

Lemma 1.2.5. For Z ⊂ Kn, I(Z) is a radical ideal. If I ⊂ K[x] is an ideal, then

V(I) = V(
√
I).
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When K is algebraically closed, the precise nature of the correspondence (1.3) fol-
lows from Hilbert’s Nullstellensatz (null=zeroes, stelle=places, satz=theorem), another of
Hilbert’s foundational results in the 1890’s that helped to lay the foundations of algebraic
geometry and usher in twentieth century mathematics. We first state an apparently weak
form of the Nullstellensatz, which describes the ideals defining the empty set.

Theorem 1.2.6 (Weak Nullstellensatz). Suppose that K is algebraically closed. If I is

an ideal of K[x] with V(I) = ∅, then I = K[x].

Let b = (b1, . . . , bn) ∈ Kn. We observed that the point {b} is defined by the linear
polynomials xi − bi for i = 1, . . . , n. A polynomial f ∈ K[x] is equal to the constant f(b)
modulo the ideal mb := 〈x1 − b1, . . . , xn − bn〉, thus the quotient ring K[x1, . . . , xn]/mb is
isomorphic to the field K and so mb is a maximal ideal. In fact when K is algebraically
closed, these are the only maximal ideals of K[x].

Theorem 1.2.7. Suppose that K is algebraically closed. Then every maximal ideal m of

K[x1, . . . , xn] has the form mb for some b ∈ Kn.

Proof. We prove this when K is an uncountable field, e.g. K = C. As m is a maximal
ideal, K[x]/m is a field, L, that contains K whose dimension as a K-vector space is at most
countable (L is spanned by the images of the countably many monomials). Since K is
algebraically closed, we have L 6= K only if L contains an element ξ that does not satisfy
any algebraic equations with coefficients in K (ξ is transcendental over K). But then the
subfield of L generated by K and ξ is isomorphic to the field K(t) of rational functions
(quotients of polynomials) in the indeterminate t, under the map t 7→ ξ. Consider the
uncountable subset of K(t), { 1

t− a
| a ∈ K

}
.

We claim that this set is linearly independent over K. Indeed, suppose that there is a
linear dependency among elements of this set,

0 =
m∑

i=1

λi

1

t− ai
.

For any i = 1, . . . ,m, if we multiply this by (t − ai) and simplify, and then substitute
t = ai, we obtain the equation λi = 0. This shows that the elements 1

t−a
for a ∈ K

are linearly independent over K. Thus K(t) has uncountable dimension over K and so L
cannot contain a subfield isomorphic to K(t).

We conclude that L = K. If bi ∈ K is the image of the variable xi, then we see that
m ⊃ mb. As both are maximal ideals, they are equal.

Proof of the weak Nullstellensatz. We prove the contrapositive, if I ( K[x] is a proper
ideal, then V(I) 6= ∅. There is a maximal ideal mb with b ∈ Kn of K[x] which contains I.
But then

{b} = V(mb) ⊂ V(I) ,
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and so V(I) 6= ∅. Thus if V(I) = ∅, we must have I = K[x], which proves the weak
Nullstellensatz.

A consequence of this proof is that there is a 1-1 correspondence

{Points b ∈ V(I)} ←→ {Maximal ideals mb ⊃ I} .

The Fundamental Theorem of Algebra states that any nonconstant univariate polyno-
mial f ∈ C[x] has a root (a solution to f(x) = 0). We recast the weak Nullstellensatz as
the multivariate fundamental theorem of algebra.

Theorem 1.2.8 (Multivariate Fundamental Theorem of Algebra). Let K be an alge-

braically closed field. If the polynomials f1, . . . , fm ∈ K[x1, . . . , xn] generate a proper

ideal, then the system of polynomial equations

f1(x) = f2(x) = · · · = fm(x) = 0

has a solution in Kn.

We now deduce the strong Nullstellensatz, which we will use to complete the charac-
terization (1.3). For this, we assume that K is algebraically closed.

Theorem 1.2.9 (Nullstellensatz). Let K be an algebraically closed field. If I ⊂ K[x] is
an ideal, then I(V(I)) =

√
I.

Proof. Since V(I) = V(
√
I), we have

√
I ⊂ I(V(I)). We show the other inclusion using

the ‘trick of Rabinowitsch’. Suppose that we have a polynomial f ∈ I(V(I)). Let us
introduce a new variable t. Then the variety V(I, tf − 1) ⊂ Kn+1 defined by I and tf − 1
is empty. Indeed, if (a1, . . . , an, b) were a point of this variety, then (a1, . . . , an) would be
a point of V(I). But then f(a1, . . . , an) = 0, and so the polynomial tf − 1 evaluates to 1
(and not 0) at the point (a1, . . . , an, b).

By the weak Nullstellensatz, 〈I, tf − 1〉 = K[x, t]. In particular, 1 ∈ 〈I, tf − 1〉, and
so there exist polynomials f1, . . . , fm ∈ I and g1, . . . , gm, g ∈ K[x, t] such that

1 = f1(x)g1(x, t) + f2(x)g2(x, t) + · · ·+ fm(x)gm(x, t) + (tf(x)− 1)g(x, t) .

If we apply the substitution t = 1
f
, then the last term with factor tf − 1 vanishes and

each polynomial gi(x, t) becomes a rational function in x1, . . . , xn whose denominator is a
power of f . Clearing these denominators gives an expression of the form

fN = f1(x)G1(x) + f2(x)G2(x) + · · ·+ fm(x)Gm(x) ,

where G1, . . . , Gm ∈ K[x]. But this shows that f ∈
√
I, and completes the proof of the

Nullstellensatz.
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Corollary 1.2.10 (Algebra-Geometry Dictionary I). Over any field K, the maps V and

I give an inclusion reversing correspondence

{Radical ideals I of K[x]}
V−−→←−−
I

{Subvarieties X of Kn} (1.5)

with V(I(X)) = X. When K is algebraically closed, the maps V and I are inverses, and

this correspondence is a bijection.

Proof. First, we already observed that I and V reverse inclusions and these maps have
the domain and range indicated. Let X be a subvariety of Kn. In Lemma 1.2.4 we showed
that X = V(I(X)). Thus V is onto and I is one-to-one.

Now suppose that K is algebraically closed. By the Nullstellensatz, if I is radical then
I(V(I)) = I, and so I is onto and V is one-to-one. Thus I and V are inverse bijections.

Corollary 1.2.10 is only the beginning of the algebra-geometry dictionary. Many nat-
ural operations on varieties correspond to natural operations on their ideals. The sum

I + J and product I · J of ideals I and J are defined to be

I + J := {f + g | f ∈ I and g ∈ J}
I · J := 〈fg | f ∈ I and g ∈ J〉 .

Note that I + J is the ideal 〈I, J〉 generated by I ∪ J , and that I ∩ J is also an ideal.

Lemma 1.2.11. Let I, J be ideals in K[x] and set X := V(I) and Y := V(J) to be their

corresponding varieties. Then

1. V(I + J) = X ∩ Y ,

2. V(I · J) = V(I ∩ J) = X ∪ Y ,

If K is algebraically closed, then by the Nullstellensatz we also have

3. I(X ∩ Y ) =
√
I + J , and

4. I(X ∪ Y ) =
√
I ∩ J =

√
I · J .

You are asked to prove this in Exercise 8.

Example 1.2.12. It can happen that I · J 6= I ∩ J . For example, if I = 〈xy − x3〉 and
J = 〈y2 − x2y〉, then I · J = 〈xy(y − x2)2〉, while I ∩ J = 〈xy(y − x2)〉. ⋄

The correspondence (1.5) will be further refined in Section 1.3 to include maps between
varieties. Because of this correspondence, each geometric concept has a corresponding
algebraic concept, and vice-versa, when K is algebraically closed. When K is not alge-
braically closed, this correspondence is not exact. In that case we will often use algebra
to guide our geometric definitions.
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A polynomial f ∈ K[x] has an essentially unique factorization f = f1 · · · fs into irre-
ducible polynomials. It is unique in that any other factorization into irreducible polyno-
mials will have the same length, and after permuting factors, the corresponding factors
in each factorization are proportional. Collecting proportional factors and extracting a
constant α if necessary, have f = αgn1

1 · · · gnr
r with each ni ≥ 1, where, if i 6= j, then gi is

not proportional to gj. The square-free part of f is
√
f = g1 · · · gr, and we have

√
〈f〉 =

〈√
f
〉

= 〈g1〉 ∩ 〈g2〉 ∩ · · · ∩ 〈gr〉 ,

so that V(f) = V(g1) ∪ · · · ∪ V(gr).

Exercises

1. Show that the map I reverses inclusions so that Z ⊂ Y implies I(Z) ⊃ I(Y ).

2. Verify the claim that the smallest ideal containing a set S ⊂ K[x] of polynomials
consists of all expressions of the form

h1f1 + · · ·+ hmfm

where f1, . . . , fm ∈ S and h1, . . . , hm ∈ K[x].

3. Let I be an ideal of K[x]. Show that

√
I := {f ∈ K[x] | fN ∈ I, for some N ∈ N}

is an ideal, is radical, and is the smallest radical ideal containing I.

4. If Y ( X are varieties, show that I(X) ( I(Y ).

5. Suppose that I and J are radical ideals. Show that I ∩ J is also a radical ideal.

6. Give radical ideals I and J for which I + J is not radical.

7. Let I be an ideal in K[x], where K is a field. Prove or find counterexamples to the
following statements. Make your assumptions clear.

(a) If V(I) = Kn then I = 〈0〉.
(b) If V(I) = ∅ then I = K[x].

8. Give a proof of Lemma 1.2.11. Hint: Statements 1. and 2. are set-theoretic.

9. Give two algebraic varieties Y and Z such that I(Y ∩ Z) 6= I(Y ) + I(Z).

10. (a) Let I be an ideal of K[x]. Show that if K[x]/I is a finite dimensional K-vector
space then V(I) is a finite set.
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(b) Let J = 〈xy, yz, xz〉 be an ideal in K[x, y, z]. Find the generators of I(V(J)).
Show that J cannot be generated by two polynomials in K[x, y, z]. Describe
V (I) where I = 〈xy, xz − yz〉. Show that

√
I = J .

11. Prove that there are three points p, q, and r in K2 such that

√
〈x2 − 2xy4 + y6, y3 − y〉 = I({p}) ∩ I({q}) ∩ I({r}) .

Show directly that the ideal 〈x2 − 2xy4 + y6, y3 − y〉 is not radical.

12. Deduce the weak Nullstellensatz from the statement of the Strong Nullstellensatz,
showing that they are equivalent.

1.3 Maps and homomorphisms

We strengthen the algebra-geometry dictionary of Section 1.2 in two ways. We first replace
affine space Kn by an affine variety X and the polynomial ring K[x1, . . . , xn] by the ring
K[X] of regular functions on X and establish a correspondence between subvarieties of X
and radical ideals of K[X]. Next, we establish a correspondence between regular maps of
varieties and homomorphisms of their coordinate rings.

We have used that a polynomial f ∈ K[x] = K[x1, . . . , xn] gives a function f : Kn → K,
defined by evaluation at points of Kn. When K is infinite, the function is identically zero
if and only if f is the zero polynomial, so this representation of polynomials by functions
is faithful. Further suppose that X ⊂ Kn is an affine variety. Any polynomial function
f ∈ K[x] restricts to give a regular function on X, f : X → K. We may add and multiply
regular functions, and the set of all regular functions on X forms a ring, K[X], called
the coordinate ring of the affine variety X or the ring of regular functions on X. The
coordinate ring of an affine variety X is a basic invariant of X, which we will show is in
fact equivalent to X itself.

The restriction of polynomial functions on Kn to regular functions on X defines a
surjective ring homomorphismK[x] ։ K[X]. The kernel of this restriction homomorphism
is the set of polynomials that vanish identically on X, that is, the ideal I(X) of X. Under
the correspondence between ideals, quotient rings, and homomorphisms, this restriction
map gives an isomorphism between K[X] and the quotient ring K[x]/I(X).

Example 1.3.1. The coordinate ring of the parabola y = x2 is K[x, y]/〈y − x2〉, which
is isomorphic to K[x], the coordinate ring of K1. To see this, observe that substituting
x2 for y rewrites any polynomial f(x, y) ∈ K[x, y] as a polynomial g(x) = f(x, x2) in x
alone. The resulting map K[x, y]/〈y − x2〉 → K[x] is well-defined and surjective. Since
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y − x2 divides the difference f(x, y)− g(x), the map is injective.

Parabola Cuspidal cubic

On the other hand, the coordinate ring of the cuspidal cubic y2 = x3 isK[x, y]/〈y2−x3〉.
This ring is not isomorphic to K[x, y]/〈y − x2〉. Indeed, the element y2 = x3 has two
distinct factorizations into irreducible elements, while polynomials f(x) in one variable
have a unique factorization into irreducible polynomials. ⋄

Let X ⊂ Kn be a variety. Its coordinate ring K[X] = K[x]/I(X) has the structure of
a vector space over K, where addition is defined by the addition in the ring and scalar
multiplication is defined by multiplication with an element in K.

Definition 1.3.2. A K-algebra is a ring that contains the field K as a subring. ⋄

A K-algebra has the structure of a vector space over K. The coordinate ring K[X] of
a variety X is a K-algebra. Observe that K[X] = K[x]/I(X) is finitely generated as a
K-algebra by the images of the variables xi. Since I(X) is radical, Exercise 4 implies that
the coordinate ring K[X] has no nilpotent elements (elements f such that fN = 0 for some
N). Such a ring with no nilpotent elements is called reduced. When K is algebraically
closed, these two properties characterize coordinate rings of algebraic varieties.

Theorem 1.3.3. Suppose that K is algebraically closed. A K-algebra R is the coordinate

ring of an affine variety if and only if R is finitely generated and reduced.

Proof. We need only show that a finitely generated reduced K-algebra R is the coordinate
ring of some affine variety. Suppose that the reduced K-algebra R has generators r1, . . . , rn
for some n ∈ N. Then there is a surjective ring homomorphism

ϕ : K[x1, . . . , xn] −։ R

given by xi 7→ ri. Let I ⊂ K[x] be the kernel of ϕ. This identifies R with K[x]/I. Since
R is reduced, we have that I is radical. Indeed, a polynomial f 6∈ I with fN ∈ I gives a
nonzero element ϕ(f) ∈ R with (ϕ(f))N = 0.

As K is algebraically closed, the algebra-geometry dictionary of Corollary 1.2.10 shows
that I = I(V(I)) and so R ≃ K[x]/I ≃ K[V(I)].

A different choice s1, . . . , sm of generators for R in this proof will give a different affine
variety with the same coordinate ring R. We seek to understand this apparent ambiguity.
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Example 1.3.4. The finitely generated K-algebra R := K[t] is the coordinate ring of
the affine line K. Note that if we set x := t + 1 and y := t2 + 3t, these generate R. As
y = x2 + x − 2, this choice of generators realizes R as K[x, y]/〈y − x2 − x + 2〉, which is
the coordinate ring of a parabola in K2. ⋄

Among the coordinate rings K[X] of affine varieties are the polynomial algebras K[x].
Many properties of polynomial algebras, including the algebra-geometry dictionary of
Corollary 1.2.10 and the Hilbert Theorems hold for these coordinate rings K[X].

Given regular functions f1, . . . , fm ∈ K[X] on an affine variety X ⊂ Kn, their set of
common zeroes

V(f1, . . . , fm) := {x ∈ X | f1(x) = · · · = fm(x) = 0} ,
is a subvariety of X. To see this, let F1, . . . , Fm ∈ K[x] be polynomials which restrict to
the functions f1, . . . , fm on X. Then

V(f1, . . . , fm) = X ∩ V(F1, . . . , Fm) ,

and by Lemma 1.2.11 intersections of varieties are again varieties. As in Section 1.2,
we may extend this notation and define V(I) for an ideal I of K[X]. If Y ⊂ X is a
subvariety of X, then I(X) ⊂ I(Y ) and so I(Y )/I(X) is an ideal in the coordinate ring
K[X] = K[x]/I(X) of X. (Recall that from abstract algebra, ideals of a quotient ring
R/I have the form J/I, where J is an ideal of R which contains I.) Write I(Y ) ⊂ K[X]
for the ideal of Y in K[X].

Both Hilbert’s Basis Theorem and Hilbert’s Nullstellensätze have analogs for affine
varieties X and their coordinate rings K[X]. These consequences of the original Hilbert
Theorems follow from the surjection K[x] ։ K[X] and corresponding inclusion X →֒ Kn.

Theorem 1.3.5 (Hilbert Theorems for K[X]). Let X be an affine variety. Then

1. Any ideal of K[X] is finitely generated.

2. If Y is a subvariety of X then I(Y ) ⊂ K[X] is a radical ideal.

3. Suppose that K is algebraically closed. An ideal I of K[X] defines the empty set if

and only if I = K[X].

As in Section 1.2 we obtain a version of the algebra-geometry dictionary between
subvarieties of an affine variety X and radical ideals of K[X]. The proofs are nearly the
same, and we leave them to you in Exercise 2.

Theorem 1.3.6. Let X be an affine variety. Then the maps V and I give an inclusion

reversing correspondence

{Radical ideals I of K[X]}
V−−→←−−
I

{Subvarieties Y of X} (1.6)

with I injective and V surjective. When K is algebraically closed, the maps V and I are

inverse bijections.
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We enrich this correspondence by studying maps between varieties.

Definition 1.3.7. A list f1, . . . , fm ∈ K[X] of regular functions on an affine variety X
defines a function

ϕ : X −→ Km

x 7−→ (f1(x), f2(x), . . . , fm(x)) ,

which we call a regular map. ⋄

Example 1.3.8. The elements t2, t,−t3 ∈ K[t] define the map K1 → K3 whose image is
the cubic curve of Figure 1.2. The elements t2, t3 of K[t] define a map K1 → K2 whose
image is the cuspidal cubic that we saw in Example 1.3.1.

Let x = t2−1 and y = t3− t, which are elements of K[t]. These define a map K1 → K2

whose image is the nodal cubic curve V(y2 − (x3 + x2)) on the left below. If we instead
take x = t2 + 1 and y = t3 + t, then we get a different map K1 → K2 whose image is the
curve V(y2 − (x3 − x2)) on the right below. Both are singular at the origin.

In the curve on the right, the image of R1 is the arc, while the isolated or solitary point

is the image of the points ±
√
−1.

Another regular map is matrix multiplication, Km×n × Kn×p → Km×p, because the
product of two matrices (ai,j) ∈ Km×n and (bk,l) ∈ Kn×p is the matrix in Km×p whose
(i, l)-entry is

∑n

j=1 ai,jbj,l. Similarly, Cramer’s rule (Exercise 9) shows that operation of
taking the inverse of a matrix is a regular map from GLn(K) to itself. ⋄

Suppose that X is an affine variety and we have a regular map ϕ : X → Km given by
regular functions f1, . . . , fm ∈ K[X]. A polynomial g ∈ K[x1, . . . , xm] pulls back along ϕ
to give the regular function ϕ∗g, which is defined by

ϕ∗g := g(f1, . . . , fm) .

This element of the coordinate ring K[X] of X is the usual pull back of a function. For
x ∈ X we have

(ϕ∗g)(x) = g(ϕ(x)) = g(f1(x), . . . , fm(x)) .

The resulting map ϕ∗ : K[x1, . . . , xm] → K[X] is a homomorphism of K-algebras. Con-
versely, given a homomorphism ψ : K[x1, . . . , xm] → K[X] of K-algebras, if we set fi :=
ψ(xi), then f1, . . . , fm ∈ K[X] define a regular map ϕ with ϕ∗ = ψ.

We have just shown the following basic fact.
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Lemma 1.3.9. The association ϕ 7→ ϕ∗ defines a bijection

{
Regular maps

ϕ : X → Km

}
←→

{
K-algebra homomorphisms

ψ : K[x1, . . . , xm] → K[X]

}

In each of the regular maps of Example 1.3.8, the image ϕ(X) of X under ϕ was equal
to a subvariety. This is not always the case.

Example 1.3.10. Let X = V(xy − 1) be the hyperbola in K2 and ϕ : K2 → K the map
which forgets the second coordinate. Then ϕ(X) = Kr {0} ( K.

V(xy − 1)

−−−−→ϕ
Kr {0}

For a more interesting example, let X = V(xy − z) ⊂ K3, the hyperbolic paraboloid.
Consider the map ϕ : X → K3 given by the three regular functions on X which are
the images in K[X] of yx, xz, xy. Let (a, b, c) be coordinates for the image K3. Then
ϕ∗(a) = yz, ϕ∗(b) = xz, and ϕ∗(c) = xy = z, as xy = z in K[X]. But then ϕ∗(ab− c3) =
xyz2− z3 = 0 as again xy = z in K[X]. Consequently, ϕ(X) ⊂ V(ab− c3). We show these
two varieties V(xy − z) and V(ab− c3).

x

y

z

V(xy−z)

a

b

c

V(ab−c3)

We do not have ϕ(X) = V(ab − c3). Let (a, b, c) ∈ V(ab − c3). If c 6= 0, then you may
check that (b/c, a/c, c) ∈ V(xy − z), and ϕ(b/c, a/c, c) = (a, b, c). However, if c = 0, then
either a = 0 or b = 0. If (a, b) 6= (0, 0), then the point (a, b, c) does not lie in the image
of ϕ, but (0, 0, 0) = ϕ(0, 0, 0). Thus the image of X under ϕ is the complement of the a-
and b-axes in V(ab− c3), together with the origin. This image is neither a subvariety, nor
the complement of a subvariety. ⋄

For the rest of this section, suppose that K is algebraically closed. Impose this condition

more surgically.
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Lemma 1.3.11. Let X be an affine variety, ϕ : X → Km a regular map, and Y ⊂ Km a

subvariety. Then ϕ(X) ⊂ Y if and only if I(Y ) ⊂ kerϕ∗.

In particular, V(kerϕ∗) is the smallest subvariety of Km that contains the image ϕ(X)
of X under ϕ. We call this the subvariety of Km parameterized by ϕ. Determining its ideal
kerϕ∗ ⊂ K[y1, . . . , ym] is called the implictization problem as it seeks implicit equations
that define the the image ϕ(X) ⊂ Km. For example, consider the map K2 → K3 defined
by ϕ(u, v) = (uv, v, v2). Its image is the Whitney umbrella

which has implicit equation x2 − y2z, where (x, y, z) are the coordinates of K3.

Proof of Lemma 1.3.11. First suppose that ϕ(X) ⊂ Y . If f ∈ I(Y ) then f vanishes on
Y and hence on ϕ(X). But then ϕ∗f is the zero function, and so I(Y ) ⊂ kerϕ∗.

For the other direction, suppose that I(Y ) ⊂ kerϕ∗ and let x ∈ X. If f ∈ I(Y ), then
ϕ∗f = 0 and so 0 = ϕ∗f(x) = f(ϕ(x)). This implies that ϕ(x) ∈ Y , and so we conclude
that ϕ(X) ⊂ Y .

Definition 1.3.12. Affine varieties X and Y are isomorphic if there are regular maps
ϕ : X → Y and ψ : Y → X such that both ϕ ◦ ψ and ψ ◦ ϕ are the identity maps on Y
and X, respectively. In this case, we say that ϕ and ψ are isomorphisms. ⋄

Corollary 1.3.13. Let X be an affine variety, ϕ : X → Km a regular map, and Y ⊂ Km

a subvariety. Then

(1) kerϕ∗ is a radical ideal.

(2) V(kerϕ∗) is the smallest affine variety containing ϕ(X).

(3) If ϕ : X → Y , then ϕ∗ : K[x1, . . . , xm] → K[X] factors through K[Y ] inducing a

homomorphism ϕ∗ : K[Y ] → K[X].

(4) ϕ is an isomorphism of varieties if and only if ϕ∗ : K[Y ] → K[X] is an isomorphism

of K-algebras.

(5) ϕ−1(Y ) = V(ϕ∗I(Y )), and if Z ⊂ X is a subvariety, then I(ϕ(Z)) = (ϕ∗)−1I(Z).
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Proof. For (1), suppose that fN ∈ kerϕ∗, so that 0 = ϕ∗(fN) = (ϕ∗(f))N . Since K[X]
has no nilpotent elements, we conclude that ϕ∗(f) = 0 and so f ∈ kerϕ∗.

Suppose that Y is an affine variety containing ϕ(X). By Lemma 1.3.11, I(Y ) ⊂ kerϕ∗

and so V(kerϕ∗) ⊂ Y . Statement (2) follows as we also have X ⊂ V(kerϕ∗).
For (3), we have I(Y ) ⊂ kerϕ∗ and so the map ϕ∗ : K[x1, . . . , xm] → K[X] factors

through the quotient map K[x1, . . . , xm] ։ K[x1, . . . , xm]/I(Y ) = K[Y ].
Statement (4) is immediate from the definitions.
For (5), observe that x ∈ ϕ−1(Y ) if and only if ϕ(x) ∈ Y , if and only if 0 = f(ϕ(x)) =

ϕ∗f(x) for all f ∈ I(Y ). By part (2), I(ϕ(Z)) is the kernel of the composition of ϕ∗ with
the surjection K[X] ։ K[Z] = K[X]/I(Z), which is I(Z).

Thus we may refine the correspondence of Lemma 1.3.9. Let X and Y be affine
varieties. Then the association ϕ 7→ ϕ∗ gives a bijective correspondence

{
Regular maps
ϕ : X → Y

}
←→

{
K-algebra homomorphisms

ψ : K[Y ] → K[X]

}
.

This map X 7→ K[X] from affine varieties to finitely generated reduced K-algebras not
only sends objects to objects, but it induces an isomorphism on maps between objects
(reversing their direction however). In mathematics, such an association is called a con-

travariant equivalence of categories. The point here of this equivalence is that an affine
variety and its coordinate ring are different packages for the same information. Each one
determines and is determined by the other. Whether we study algebra or geometry, we
are studying the same thing.

As observed in Example 1.3.10, the image of a variety under a regular map need not
be a variety. We consider a class of maps that sends varieties to varieties.

Let X ⊂ Kn be a variety and ϕ : X → Km be a regular map. Set Y to be the smallest
variety containing ϕ(X). By construction, the map ϕ∗ : K[Y ] → K[X] is an injection.
Identifying K[Y ] with the image of ϕ∗, we may consider K[Y ] ⊂ K[X]. We say that the
map ϕ : X → Y is finite if there exist u1, . . . , us ∈ K[X] such that

K[x] = u1K[Y ] + u2K[Y ] + · · ·+ usK[Y ] . (1.7)

That is, every element of K[X] is a K[Y ]-linear combination of u1, . . . , us. In other words,
K[X] is finitely generated as a K[Y ]-module. (See A.1.3 in the Appendix.) We present
the main consequence of finite maps.

Theorem 1.3.14. A finite map ϕ : X → Y of affine varieties is surjective. If Z ⊂ X is

a subvariety, then ϕ(Z) is a subvariety of Y .

The second statement is left to you as Exercise 8. Before proving this theorem, we
explain why such a map is called finite.

Corollary 1.3.15. Let ϕ : X → Y be a finite map. Then every fiber ϕ−1(y) for y ∈ Y is

a nonempty finite set.
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Proof. Let t ∈ K[X]. Since K[X] is finitely generated as a module over K[Y ], it is
Noetherian and there is a number k ≥ 1 such that tk lies in the submodule gener-
ated by 1, t, . . . , tk−1. (Indeed, for i ∈ N, let Mi be the K[Y ]-submodule generated by
1, t, . . . , ti. Then M0 ⊂ M1 ⊂ · · · ⊂ K[X] is an increasing chain of submodules. As
K[X] is Noetherian, there is some k such that Mk = Mk−1.) This implies that there exist
c0, c1, . . . , ck−1 ∈ K[Y ] such that in K[X] we have

tk + ck−1t
k−1 + · · ·+ c1t+ c0 = 0 .

For y ∈ Y the value of t at any point x ∈ ϕ−1(y) is solution of the equation

tk + ck−1(y)t
k−1 + · · ·+ c1(y)t+ c0(y) = 0 . (1.8)

That is, t takes on only finitely many values on ϕ−1(y). As X ⊂ Kn, doing this for all n
coordinate functions shows that the fiber ϕ−1(y) is finite.

This proof illustrates a useful characterization of finite extensions K[Y ] ⊂ K[X]. Sup-
pose that S ⊂ R are K-algebras. An element t ∈ R is integral over S if there are
c1, . . . , ck ∈ S such that

tk + c1t
k−1 + c2t

k−2 + · · ·+ ck−1t+ ck = 0 .

That is, t satisfies a monic polynomial equation with coefficients in S. A map ϕ : X → Y
is finite if and only if ϕ∗ : K[Y ] → K[X] is an injection and every element t ∈ K[X] is
integral over K[Y ]. Corollary 1.3.15 gives one direction, the other is discussed in the
Appendix A.1.3.

Another meaningful interpretation of the adjective finite is that as y moves in Y , none
of the points of ϕ−1(y) may disappear by going to infinity as in Example 1.3.10. Indeed,
if t is a coordinate function on Kn, then on ϕ−1(y) it satisfies (1.8), and no root of this
polynomial can tend to infinity as the coefficient of the leading term is 1. Consequently,
as y moves in Y , the points in the fiber may merge, but they will not disappear.

Typical proofs of Theorem 1.3.14 use standard results in commutative algebra, such as
Nakayama’s Lemma. To stress the elementary nature of the argument, we give a complete
treatment. Let us first recall Cramer’s rule, which is a consequence of the standard formula
for determinant. Let R be a ring and M ∈ Matn×n(R), an n×n matrix with entries from
R. We define the determinant of M = (mi,j)

n
i,j=1 by the usual formula,

det(M) :=
∑

π∈Sn

sgn(π)m1,π(1) ·m2,π(2) · · ·mn,π(n) , (1.9)

where Sn is the group of permutations of [n] := {1, . . . , n}, and for π ∈ Sn, its sign is
sgn(π) := (−1)ℓ(π), where

ℓ(π) := #{i < j | π(i) > π(j)} .
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For i, j ∈ [n], let M̂i,j be the matrix obtained from M by deleting its ith row and jth
column. Define the adjoint of the matrix M to be adjM ∈ Matn×n(R) to be the matrix
whose (i, j)-th entry is

adjMi,j := (−1)i+j det(M̂j,i) .

Exercise 9 asks you to prove Cramer’s rule,

adjM ·M = det(M)In . (1.10)

Here In is the identity matrix. When det(M) is invertible, this gives a formula for the
inverse of a matrix M .

The next step is a result from commutative algebra.

Lemma 1.3.16. Let S ⊂ R be K-algebras and suppose that R is finitely generated as an

S-module. If I ( S is a proper ideal of S, then IR 6= R.

Proof. There exist r1, . . . , rn ∈ R such that R = r1S + · · · + rnS. Suppose that IR = R.
Then there are elements mi,j ∈ I for i, j ∈ [n] such that for each i = 1, . . . , n,

ri =
n∑

j=1

mi,jrj . (1.11)

Writing M for the matrix (mi,j)
n
i,j=1 and ~r for the vector (r1, . . . , rn)

T , (1.11) becomes
(In −M)~r = 0 in Rn.

Applying Cramer’s rule to the matrix In −M and writing µ for det(In −M), we have
µ~r = 0. That is, µri = 0 for each i, and so µR = 0. As 1 ∈ R (it is a K-algebra), this
implies that µ = 0. As mi,j ∈ I, the formula (1.9) for det(In −M) shows that µ = 1 +m
for some m ∈ I, which implies that −1 ∈ I and so I = S, a contradiction.

Proof of Theorem 1.3.14. Let ϕ : X → Y be a finite map of varieties. Then K[X] is a
finitely generated K[Y ]-module. Let y ∈ Y and my ⊂ K[Y ] its (maximal) ideal. By
Corollary 1.3.13(5), the ideal of ϕ−1(y) is myK[X]. By Lemma 1.3.16, myK[X] 6= K[X],
as my 6= K[Y ]. By the Nullstellensatz, ∅ 6= V(myK[X]) = ϕ−1(y), which completes the
proof.

Exercises

1. Suppose that K is an infinite field. Show that f ∈ K[x1, . . . , xn] defines the zero
function f : Kn → K if and only if f is the zero polynomial. (Hint: For the interesting
direction, consider first the case when n = 1 and then use induction.)

2. Give a proof of Theorem 1.3.5.
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3. Let V = V(y − x2) ⊂ K2 and W = V(xy − 1) ⊂ K2. Show that

K[V ] := K[x, y]/I(V ) ∼= K[t]

K[W ] := K[x, y]/I(W ) ∼= K[t, t−1]

Conclude that the hyperbola V (xy − 1) is not isomorphic to the affine line.

4. Let I ⊂ K[x1, . . . , xn] be an ideal. Show that the quotient ring K[x1, . . . , xn]/I has
nilpotent elements if and only if I is not a radical ideal.

5. Suppose that I ⊂ K[x1, . . . , xn] is a radical ideal and that X := V(I) is a finite set.
Prove that the restriction of polynomial functions to X is a surjective map from
the ring of polynomials K[x1, . . . , xn] to the finite vector space of functions from
X → K.

6. Verify the claims about the parametrizations in Example 1.3.8, that the image of
K under the map t 7→ (t2 − 1, t3 − t) is V(y2 − (x3 + x2)) and its image under
t 7→ (t2 + 1, t3 + t) is V(y2 − (x3 − x2)).

7. Show that A 7→ A−1 is a regular map on GLm(K). (You may need Exercise 9.)

8. Prove the second statement of Theorem 1.3.14, by using (1.7) and Corollary 1.3.13(5)
to show that K[Z] is finitely generated as a module over an appropriate subalgebra.

9. Prove Cramer’s rule (1.10). You may use the formula (1.9) for the determinant, or
any other properties of determinant. Under what conditions does this give a formula
for the inverse of a matrix?

1.4 Projective varieties

Projective space and projective varieties are of central importance in algebraic geometry.
We motivate projective space with an example.

Example 1.4.1. Consider the intersection of the parabola y = x2 in the affine plane K2

with a line, ℓ := V(ay + bx+ c). Solving these implied equations gives

ax2 + bx+ c = 0 and y = x2 . (1.12)

There are several cases to consider, illustrated below (1.13).

(i) a 6= 0 and b2 − 4ac > 0. Then ℓ meets the parabola in two distinct real points.

(i′) a 6= 0 and b2 − 4ac < 0. While ℓ does not appear to meet the parabola, that is
because we have drawn the picture in R2. In C2, ℓ meets it in two complex conjugate
points.
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When K is algebraically closed, then cases (i) and (i′) coalesce to the case of a 6= 0
and b2−4ac 6= 0. These two points of intersection are predicted by Bézout’s Theorem
in the plane (Theorem 2.1.17).

(ii) a 6= 0 but b2 − 4ac = 0. Then ℓ is tangent to the parabola and we solve the
equations (1.12) to get

a(x− b
2a
)2 = 0 and y = x2 .

Thus there is one solution, ( b
2a
, b2

4a2
). As x = b

2a
is a root of multiplicity 2 in the

first equation, it is reasonable to say that this one solution to our geometric problem
occurs with multiplicity 2.

(iii) a = 0, so that the line ℓ is vertical. There is a single, unique solution, x = −c/b and
y = c2/b2.

Let us examine this passage to a vertical line. Suppose now that c = 0 and let b = 1.
For a 6= 0, there are two solutions (0, 0) and (− 1

a
, 1
a2
). In the limit as a → 0, the

second solution disappears off to infinity.

We illustrate these three possibilities.

ℓ

(i)
ℓ

(ii)

y = −x/a

(− 1
a
, 1
a2
)

(iii)

(1.13)

One purpose of projective space is to prevent this last phenomenon from occurring. ⋄

Definition 1.4.2. The set of all 1-dimensional linear subspaces of Kn+1 is called n-dimen-

sional projective space and written Pn or Pn
K. If V is a finite-dimensional vector space, then

P(V ) is the set of all 1-dimensional linear subspaces of V . Note that P(V ) ≃ PdimV−1. If
V ⊂ Kn+1 is a linear subspace, then P(V ) ⊂ Pn is a linear subspace of Pn. ⋄

Example 1.4.3. The projective line P1 is the set of lines through the origin in K2. When
K = R, the line x = ay through the origin intersects the circle V(x2 + (y − 1)2 − 1) in
the origin and in the second point ( 2a

1+a2
, 2
1+a2

), as shown in Figure 1.4. Identifying the

nonhorizontal line x = ay with this point ( 2a
1+a2

, 2
1+a2

) and the horizontal x-axis with the
origin, this identifies P1

R with the circle. ⋄
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x

yy = ax

(
2a

1+a2
, 2
1+a2

)

Figure 1.4: Lines through the origin meet the circle in a second point.

This definition of Pn leads to a system of coordinates for Pn. We may represent a
point, ℓ, of Pn by the coordinates [a0, a1, . . . , an] of any non-zero vector lying on the one-
dimensional linear subspace ℓ ⊂ Kn+1. These coordinates are not unique. If λ 6= 0, then
[a0, a1, . . . , an] and [λa0, λa1, . . . , λan] both represent the same point. This non-uniqueness
is the reason that we use rectangular brackets [. . . ] in our notation for these homogeneous

coordinates. Some authors prefer the notation [a0 : a1 : · · · : an].

Example 1.4.4. When K = R, observe that a 1-dimensional subspace of Rn+1 meets
the unit sphere Sn in two antipodal points, v and −v. The group S0 = {−1, 1} of real
numbers of absolute value 1 acts on Sn by scalar multiplication interchanging antipodal
points. This identifies real projective space Pn

R with the quotient Sn/{±1}, showing that
Pn
R is a compact manifold in the usual (Euclidean) topology.
Suppose that K = C. Given a point a ∈ Pn

C, after scaling, we may assume that
|a0|2 + |a1|2 + · · · + |an|2 = 1. Identifying C with R2, this is the set of points a on the
(2n+1)-sphere S2n+1 ⊂ R2n+2. If [a0, . . . , an] = [b0, . . . , bn] with a, b ∈ S2n+1, then there
is some ζ ∈ S1, the unit circle in C, such that ai = ζbi. This identifies Pn

C with the
quotient of S2n+1/S1, showing that Pn

C is a compact manifold. This is a version of the
Hopf fibration. Since Pn

R ⊂ Pn
C, we again see that Pn

R is compact. ⋄

Homogeneous coordinates of a point are not unique. Uniqueness may be restored,
but at the price of non-uniformity. Let Ai ⊂ Pn be the set of points [a0, a1, . . . , an] in
projective space Pn with ai 6= 0, but ai+1 = · · · = an = 0. Given a point a ∈ Ai, we may
divide by its ith coordinate to get a representative of the form [a0, . . . , ai−1, 1, 0, . . . , 0].
These i numbers (a0, . . . , ai−1) provide coordinates for Ai, identifying it with the affine
space Ki. This decomposes projective space Pn into a disjoint union of n+1 affine spaces

Pn = Kn ⊔ · · · ⊔K1 ⊔K0 .

When a variety admits a decomposition as a disjoint union of affine spaces, we say that
it is paved by affine spaces. Many important varieties admit such a decomposition, such
as the Grassmannians of Section 10.1.
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✲
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ℓ
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✁

✁☛

Figure 1.5: Affine paving of P2.

It is instructive to look at this closely for P2. Figure 1.5 shows the possible positions
of a one-dimensional linear subspace ℓ ⊂ K3 with respect to the x, y-plane z = 0, the
x-axis z = y = 0, and the origin in K3. Note that the last two charts give P1, so we have
P2 = K2 ⊔ P1, which is the familiar decomposition of the projective plane as the plane
plus the line at infinity.

Projective space also admits systems of local coordinates. For i = 0, . . . , n, let Ui be
the set of points a ∈ Pn in projective space whose ith coordinate is non-zero. Dividing by
this ith coordinate, we obtain a representative of the point having the form

[a0, . . . , ai−1, 1, ai+1, . . . , an] .

The n coordinates (a0, . . . , ai−1, ai+1, . . . , an) determine this point, identifying Ui with
affine n-space, Kn. Geometrically, Ui is the set of lines in Kn+1 that meet the affine plane
defined by xi = 1, with the point of intersection identifying Ui with this affine plane.
Every point of Pn lies in some Ui, so that we have

Pn = U0 ∪ U1 ∪ · · · ∪ Un .

When K = R or K = C, these Ui are coordinate charts for P
n as a manifold. For any field

K, these affine sets Ui provide coordinate charts for Pn.
These affine charts have a coordinate-free description. Let Λ: Kn+1 → K be a linear

map, and let H ⊂ Kn+1 be the set {x ∈ Kn+1 | Λ(x) = 1}. Then H ≃ Kn, and the map

H ∋ x 7−→ [x] ∈ Pn

identifies H with the complement UΛ := Pn − P(V(Λ)) of the hyperplane defined by Λ.

Example 1.4.5 (Probability simplex). This second and more general description of affine
charts leads to an application of algebraic geometry to statistics. Here K = R, the real
numbers and we set Λ(x) := x0 + · · ·+ xn. If we consider those points x where Λ(x) = 1
which have nonnegative coordinates, we obtain the probability simplex

n := {(p0, p1, . . . , pn) ∈ Rn+1
+ | p0 + p1 + · · ·+ pn = 1} ,

where Rn+1
+ is the nonnegative orthant, the points of Rn+1 with nonnegative coordinates.

Here pi represents the probability that event i occurs, and the condition p0 + · · ·+ pn = 1
reflects that every event does occur. Figure 1.6 shows this when n = 2. ⋄
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x

y

z

(.2, .3, .5)✟✟✟✟✙

ℓ = (2t, 3t, 5t)

Figure 1.6: Probability simplex when n = 2.

We wish to extend the definitions and structures of affine algebraic varieties to pro-
jective space. One problem arises immediately: given a polynomial f ∈ K[x0, . . . , xn] and
a point a ∈ Pn, we cannot in general define f(a) ∈ K. To see why this is the case, for
each natural number d, let fd be the sum of the terms of f of degree d. We call fd the dth
homogeneous component of f . If [a0, . . . , an] and [λa0, . . . , λan] are two representatives of
a point a ∈ Pn, and f has degree m, then

f(λa0, . . . , λan) = f0(a0, . . . , an) + λf1(a0, . . . , an) + · · ·+ λmfm(a0, . . . , an) , (1.14)

since we can factor λd from every monomial (λx)α of degree d. Thus f(a) is a well-defined
number only if the polynomial (1.14) in λ is constant. That is, if and only if

fi(a0, . . . , an) = 0 i = 1, . . . , deg(f) .

For a particular case, observe that a polynomial f vanishes at a point a ∈ Pn if and only
if every homogeneous component fd of f vanishes at a. A polynomial f is homogeneous

of degree d when f = fd. We also use the term form for a homogeneous polynomial.

Definition 1.4.6. Let f1, . . . , fm ∈ K[x0, . . . , xn] be forms. These define a projective

variety

V(f1, . . . , fm) := {a ∈ Pn | fi(a) = 0, i = 1, . . . ,m} . ⋄

An ideal I ⊂ K[x0, . . . , xn] is homogeneous if whenever f ∈ I then all homogeneous
components of f lie in I. Thus projective varieties are defined by homogeneous ideals.
Given a subset Z ⊂ Pn of projective space, its ideal is the collection of polynomials which
vanish on Z,

I(Z) := {f ∈ K[x0, x1, . . . , xn] | f(z) = 0 for all z ∈ Z} .

In Exercise 2, you are asked to show that this ideal is homogeneous.
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It is often convenient to work in an affine space when treating projective varieties.
The (affine) cone CZ ⊂ Kn+1 over a subset Z of projective space Pn is the union of the
one-dimensional linear subspaces ℓ ⊂ Kn+1 corresponding to points of Z. The ideal I(X)
of a projective variety X is equal to the ideal I(CX) of the affine cone over X.

Example 1.4.7. Let Λ := a0x0 + a1x1 + · · · + anxn be a linear form. Then V(Λ) is a
hyperplane. Let V ⊂ Kn+1 be the kernel of Λ which is an n-dimensional linear subspace.
It is also the affine variety defined by Λ. We have V(Λ) = P(V ) ⊂ Pn. ⋄

Example 1.4.8. Let [x, y, z] be homogeneous coordinates for the projective plane P2,
and consider the two subvarieties V(yz− x2) and V(x+ ay). In the affine patch Uz where
z 6= 0, these subvarieties are the parabola and the line x = −ay of Example 1.4.1. Their
intersection, V(x+ ay, yz− x2), consists of the points [0, 0, 1] and [−a, 1, a2]. We see that
as a → 0, the second point approaches [0, 1, 0], and does not “disappear off to infinity” as
in Example 1.4.1(iii). ⋄

The weak Nullstellensatz does not hold for projective space, as V(x0, x1, . . . , xn) = ∅.
We call this ideal, m0 := 〈x0, x1, . . . , xn〉, the irrelevant ideal.

Lemma 1.4.9. Let I ⊂ K[x] be a homogeneous ideal. Then V(I) = ∅ if and only if there

is some d ≥ 0 such that I ⊃ m
d
0.

Proof. Note that V(I) = ∅ in projective space if and only if, in the affine cone Kn+1 over
projective space, we have either V(I) = ∅ or V(I) = {0}. This is equivalent to either
I = K[x] or

√
I = m0, which is in turn equivalent to I ⊃ m

d
0 for some d ≥ 0.

The irrelevant ideal plays a special role in the projective algebra-geometry dictionary.

Theorem 1.4.10 (Projective Algebra-Geometry Dictionary). Over any field K, the maps

V and I give an inclusion reversing correspondence

{
Radical homogeneous ideals I of

K[x0, . . . , xn] properly contained in m0

}
V−−→←−−
I

{Subvarieties X of Pn}

with V(I(X)) = X. When K is algebraically closed, the maps V and I are inverses, and

this correspondence is a bijection.

This follows from Lemma 1.4.9 and the algebra-geometry dictionary for affine varieties
(Corollary 1.2.10), if we replace a subvariety X of projective space by its affine cone CX.

If we relax the condition that an ideal be radical, then the corresponding geometric
objects are projective schemes. This comes at a price, for many homogeneous ideals will
define the same projective scheme (and even the same projective variety), which is not
the case for their affine cousins. This non-uniqueness comes from the irrelevant ideal, m0.
Recall the construction of colon ideals from commutative algebra. Let I be an ideal and
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g a polynomial. Then the colon ideal (I : g) is {f | fg ∈ I}. If J is an ideal, then the
colon ideal (or ideal quotient of I by J) is

(I : J) := {f | fJ ⊂ I} =
⋂

{(I : g) | g ∈ J} .

The saturation of I by J is

(I : J∞) =
⋃

m≥0

(I : Jm) .

One reason for these definitions are the following results for affine varieties.

Lemma 1.4.11. Let I be an ideal and g ∈ K[x] a polynomial. Then V(I : g∞) is the

smallest affine variety containing V(I)r V(g).

Proof. First note that as I ⊂ (I : g∞), we have V(I : g∞) ⊂ V(I). Let x ∈ V(I) r V(g).
If f ∈ (I : g∞), then there is some m ∈ N with fgm ∈ I, so that fgm(x) = 0. Since
x 6∈ V(g), we conclude that f(x) = 0 as g(x) 6= 0. Thus V(I)r V(g) ⊂ V(I : g∞).

For the other inclusion, let x ∈ V(I : g∞). If g(x) 6= 0, then x ∈ V(I)rV(g). Suppose
now that g(x) = 0. Let f ∈ I(V(I) r V(g)). Note that fg vanishes on V(I). By the
Nullstellensatz, there is some m such that fmgm ∈ I, and so fm ∈ (I : g∞). But then
fm(x) = 0 and so f(x) = 0. Thus x ∈ V(I(V(I)rV(g))), which completes the proof.

Corollary 1.4.12. Let I and J be ideals in K[x]. Then V(I : J∞) is the smallest variety

containing V(I)r V(J).

A homogeneous ideal I ⊂ K[x0, x1, . . . , xn] is saturated if

I = (I : m0) = {f | xif ∈ I for i = 0, 1, . . . , n} .

The reason for this definition is that I and (I : m0) define the same projective variety, by
Corollary 1.4.12 applied to the affine cones these varieties define in Kn+1.

Given a projective variety X = V(I) ⊂ Pn, consider its intersection with an affine
chart Ui = {x ∈ Pn | xi 6= 0}. For simplicity of notation, suppose that i = 0. Then

X ∩ U0 = {x ∈ U0 | f(x) = 0 for all f ∈ I} .

If we identify U0 with Kn by U0 = {[1, x1, . . . , xn] | (x1, . . . , xn) ∈ Kn}, this is

X ∩ U0 = {x ∈ Kn | f(1, x1, . . . , xn) = 0 for all f ∈ I} . (1.15)

We call the polynomial f(1, x1, . . . , xn) the dehomogenization of the homogeneous poly-
nomial f with respect to x0. The calculation (1.15) shows that X ∩U0 is the affine variety
defined by the ideal generated by the dehomogenizations of forms in I.

This proves the forward implication of the following characterization of projective
varieties in terms of their intersections with these affine charts.
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Lemma 1.4.13. A subset X ⊂ Pn is a projective variety if and only if X ∩Ui is an affine

variety, for each i = 0, . . . , n.

Proof. For the reverse implication, suppose that X ⊂ Pn is a subset such that for each
i = 0, . . . , n, X ∩Ui is an affine variety. For each i, let Hi = V(xi) be the hyperplane that
is the complement of Ui. Then X ⊂ (X ∩ Ui) ∪Hi = X ∪Hi. We claim that X ∪Hi is a
projective variety. This will imply the lemma, as

n⋂

i=0

(
X

⋃
Hi

)
= X ∪

n⋂

i=0

Hi = X ,

as H0 ∩H1 ∩ · · · ∩Hn = V(x0, . . . , xn) = ∅ in Pn.
To prove the claim, let i = 0 for simplicity and identify U0 with Kn whose coordi-

nate ring is K[x1, . . . , xn]. For a polynomial g ∈ K[x1, . . . , xn] of degree d, we have the
homogeneous form g+ of degree d+ 1 defined by

g+(x0, x1, . . . , xn) := xd+1
0 g(x1

x0
, . . . , xn

x0
) .

Let I+ be the homogeneous ideal generated by {g+ | g ∈ I(X ∩ U0)}. Since x0 always
divides g+, we have thatH0 ⊂ V(I+). Since the dehomogenization of g+ is g, the dehomog-
enization of I+ is I(X∩U0). Then our previous calculations show thatX∩U0 = V(I+)∩U0,
which completes the proof.

Corollary 1.4.14. Let X ⊂ Pn be a projective variety and Λ a linear form. Then XΛ :=
X r V(Λ) is an affine variety. Regular functions on XΛ have the form f/Λd, where

f ∈ K[x0, . . . , xn] is a form of degree d.a

Proof. Applying a linear change of coordinates, it suffices to prove this for Λ = x0, in which
case XΛ becomes X0 = X ∩U0, which is affine. A regular function on X0 is the restriction
of a regular function on U0. Such a function is the dehomogenization f(1, x1, . . . , xn) of a
form f ∈ K[x0, . . . , xn]. Let d be the degree of f . Then, as a function on U0,

f(1, x1, . . . , xn) = f
(
x0

x0
, x1

x0
, . . . , xn

x0

)
= 1

xd
0

f(x0, x1, . . . , xn) ,

which completes the proof.

The point of Lemma 1.4.13 is that every projective variety X is naturally a union of
affine varieties

X =
n⋃

i=0

(
X ∩ Ui

)
.

Consequently, we may often prove results for projective varieties by arguing locally on
each of these affine sets that cover it. It also illustrates a relationship between varieties
and manifolds: Affine varieties are to varieties as open subsets of Rn are to manifolds.



1.4. PROJECTIVE VARIETIES 41

Just as with affine varieties, projective varieties have coordinate rings. Let X ⊂ Pn be
a projective variety. Its homogeneous coordinate ring K[X] is the quotient

K[X] := K[x0, x1, . . . , xn]/I(X) .

If we set K[X]d to be the image of all degree d homogeneous polynomials, K[x0, . . . , xn]d,
then this ring is graded,

K[X] =
⊕

d≥0

K[X]d ,

where if f ∈ K[X]d and g ∈ K[X]e, then fg ∈ K[X]d+e. More concretely, we have

K[X]d = K[x0, . . . , xn]d/I(X)d ,

where I(X)d = I(X) ∩K[x0, . . . , xn]d.
This differs from the coordinate ring of an affine variety in that its elements are not

functions on X. Indeed, we already observed that, apart from constant polynomials,
elements of K[x0, . . . , xn] do not give functions on any subset of Pn. Despite this, they
will be used to define maps of projective varieties, and the homogeneous coordinate ring
plays another role which will be developed in Section 3.5.

Let Λ be a linear form on Pn and X ⊂ Pn a subvariety. A consequence of Corol-
lary 1.4.14 is that elements of the coordinate ring K[XΛ] of the affine variety XΛ have
the form f/Λdeg(f) for f a homogebeous element of K[X]. The ring K[X][ 1

Λ
] is graded by

deg(g/Λd) = deg(g)− d. This gives another description of K[XΛ].

Corollary 1.4.15. The coordinate ring of the affine variety XΛ is the degree 0 homoge-

neous component of the graded ring K[X][ 1
Λ
].

Exercises

1. Verify the claim in Example 1.4.4 that if a, b lie on the unit sphere S2n+1 in Cn+1

and define the same point in Pn, then a = ζb for some unit complex number ζ.

2. Let Z ⊂ Pn. Show that I(Z) is a homogeneous ideal.

3. A transition function ϕi,j expresses how to change from the local coordinates from
Ui of a point p ∈ Ui∩Uj to the local coordinates from Uj. Write down the transition
functions for Pn provided by the affine charts U0, . . . , Un.

4. Show that an ideal I is homogeneous if and only if it is generated by homogeneous
polynomials.

5. Show that a radical homogeneous ideal is saturated.

6. Show that the homogeneous ideal I(Z) of a subset Z ⊂ Pn is equal to the ideal
I(CZ) of the affine cone over Z.
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7. Remove Zariski closure from this! Verify the claim concerning the relation between
the ideal of an affine subvariety Y ⊂ U0 and of its Zariski closure Y ⊂ Pn:

I(Y ) = {xdeg(g)+m
0 g(x1

x0
, . . . , xn

x0
) | g ∈ I(Y ) ⊂ K[x1, . . . , xn], m ≥ 0} .

8. Show that if X ⊂ Pn is a projective variety, then the smallest projective variety
containing its intersection with the principal affine set Ux0

, X ∩ Ux0
, has ideal the

saturation (I(X) : x∞
0 ).

9. Show that if I is a homogeneous ideal and J = (I : m∞
0 ) is its saturation with

respect to the irrelevant ideal m0, then there is some integer N such that

Jd = Id for d ≥ N .

10. Verify the claim in the text that if X ⊂ Pn is a projective variety, then its homoge-
neous coordinate ring is graded with

K[X]d = K[x0, . . . , xn]d/I(X)d .

1.5 Maps of projective varieties

Many properties of a projective variety X are inherited from the affine cone CX over
X, but with some changes. The same is true for maps from X to a projective space.
Elements of its homogeneous coordinate ring give maps, but care must be taken for the
map to be well-defined. We explain this and describe some important maps of projective
varieties. This leads to the product of projective varieties, and one of the most important
properties of projective varieties; that the image of a projective variety under a map is a
subvariety. We conclude by extending finite maps to projective varieties.

Suppose that X ⊂ Pn is a projective variety. Let f0, . . . , fm ∈ K[X] be elements of its
homogeneous coordinate ring. Under what circumstances does

X ∋ x 7−→ [f0(x), f1(x), . . . , fm(x)] ∈ Pm

define a map X → Pm? (It always defines a map on affine cones CX → Km+1.) Already
the evaluation fi(x) of fi at x ∈ Pn is a problem as the value of fi(x) is ambiguous.
When f is homogeneous of degree d we saw that f(λx) = λdf(x) for λ ∈ K. Thus when
f0, . . . , fm are all homogeneous of the same degree d, their values at x ∈ Pn share the
same ambiguity. In fact, as long as x 6∈ V(f0, . . . , fm), then

ϕ(x) := [f0(x), f1(x), . . . , fm(x)] (1.16)

is a well-defined element of Pm. Indeed, for λ ∈ K, ϕ(λx) = λdϕ(x) in Km+1, so that
ϕ(λx) = ϕ(x) in Pm for λ 6= 0. When V(f0, . . . , fm) = ∅, so that the fi have no common
zeroes on X, then (1.16) defines a regular map ϕ : X → Pm.
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Example 1.5.1. Suppose that P1 has homogeneous coordinates [s, t]. Then s2, st, t2 are
homogeneous elements of its coordinate ring of the same degree, 2, with V(s2, st, t2) = ∅.
These define a regular map ϕ : P1 → P2 where

ϕ : P1 ∋ [s, t] 7−→ [s2, st, t2] ∈ P2 .

If [x, y, z] are coordinates for P2, then the image of ϕ is V(xz − y2). Indeed, the image is
a subset of V(xz − y2) as (s2)(t2) − (st)2 = 0. Let [x, y, z] ∈ V(xz − y2). If x = 0, then
y = 0 and [0, 0, z] = [0, 0, 1] = ϕ([0, 1]). If x 6= 0, then z = y2/x, and we have

[x, y, z] = [1, y/x, z/x] = [1, y/x, y2/x2] = ϕ([1, y/x]) = ϕ([x, y]) . (1.17)

Thus V(xz − y2) is the image of ϕ. This is the parabola of Examples 1.4.1 and 1.4.8. ⋄

The map ϕ of Example 1.5.1 is injective, and we would like to have that P1 is isomorphic
to its image, C. For that, we need a map C → P1 that is inverse to ϕ. For this, we
extend and refine our notion of regular map of projective varieties. Let X be a projective
variety and suppose that f0, . . . , fm ∈ K[X] are homogeneous elements of the same degree
with V(f0, . . . , fm) = ∅ which define a regular map ϕ : X → Pm (1.16). A second list
g0, . . . , gm ∈ K[X] of elements of the same degree (possible different from the degree of
the fi) with V(g0, . . . , gm) = ∅ defines the same regular map if we have

rank

(
f0 f1 . . . fm
g0 g1 . . . gm

)
= 1 , i.e., if figj − fjgi ∈ I(X) for i 6= j . (1.18)

Indeed, the conditions V(f0, . . . , fm) = V(g0, . . . , gm) = ∅ and (1.18) imply that for any
x ∈ X, [f0(x), . . . , fm(x)] = [g0(x), . . . , gm(x)] in Pm.

More interesting is when f0, . . . , fm, g0, . . . , gm satisfy (1.18), but we do not have that
V(f0, . . . , fm) = V(g0, . . . , gm) = ∅. In Example 1.5.1, (1.17) shows that if [x, y, z] ∈ C =
V(xz − y2), then [x, y, z] = ϕ([x, y]), but this requires that (x, y) 6= (0, 0). Similarly, if
(y, z) 6= (0, 0), then [x, y, z] = ϕ([y, z]). We may understand this in terms of (1.18), at
least when xyz 6= 0 as det( x y

y z ) = xz − y2, which vanishes on C. On C, V(x) = [0, 0, 1],
V(z) = [1, 0, 0], and V(y) = {[1, 0, 0], [0, 0, 1]}, so that at every point of C, at least one of
(x, y) or (y, z) can be used to define a map to P1 which is the inverse of ϕ.

Definition 1.5.2. A map ϕ : X → Pm from a projective variety X is a regular map if
for every x ∈ X, there are elements f0, . . . , fm ∈ K[X] of the same degree with x 6∈
V(f0, . . . , fm) such that for every y ∈ X r V(f0, . . . , fm),

ϕ(y) = [f0(y), f1(y), . . . , fm(y)] .

That is, ϕ has the form (1.16), but the elements f0, . . . , fm may change for different parts
of X (but any two choices satisfy (1.18), where both are defined). ⋄
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Perhaps the simplest regular map of projective varieties is a linear projection. Let X ⊂
Pn be a projective variety and suppose that L ⊂ Pn is a linear subspace disjoint from X.
Let Λ0, . . . ,Λm be linearly independent forms that vanish on L. Then L = V(Λ0, . . . ,Λm)
and L has dimenion n−m−1. We also have X ∩V(Λ0, . . . ,Λm) = ∅, so that (Λ0, . . . ,Λm)
defined a regular map πL : X → Pm, which is called a linear projection with center L.

Projective varieties X ⊂ Pn and Y ⊂ Pm are isomorphic if we have regular maps
ϕ : X → Y and ψ : Y → X for which the compositions ψ ◦ ϕ and ϕ ◦ ψ are the identity
maps on X and Y , respectively.

The map ϕ of Example 1.5.1 is an isomorphism between P1 and its image C. More
generally, the set Vn,d of all

(
n+d

n

)
homogeneous monomials in x0, . . . , xn of degree d is

a basis for the degree d component of the irrelevant ideal, and thus generates m
d
0. By

Lemma 1.4.9, V(Vn,d) = ∅, and thus this list of monomials gives a regular map,

νn,d : Pn −→ P(
n+d
n )−1 ,

called the dth Veronese map. The map ϕ of Example 1.5.1 is ν1,2. Let us study the image

of νd. We adopt a useful convention from Section 8.1 and label the coordinates of P(
n+d
n )−1

by the exponents of monomials in Vn,d,

An,d := {(a0, . . . , an) | ai ∈ N and a0 + · · ·+ an = d} .

Then Vn,d = {xα | α ∈ An,d} and [zα | α ∈ An,d] are homogeneous coordinates of P(
n+d
n )−1,

with the zαth coordinate of the Veronese map νn,d equal to xα.
Observe that if α, β, γ, δ ∈ An,d satisfy α + β = γ + δ (as integer vectors), then

zαzβ − zγzδ vanishes on the image νd(P
n) as ν∗

d(zαzβ − zγzδ) = xαxβ − xγxδ = 0. This
is the equation xz − y2 = 0 that we found for ν1,2 in Example 1.5.1. When n = 1 and
d = 3, we have A1,3 = {( 3

0 ), (
2
1 ), (

1
2 ), (

0
3 )}, ν1,3([s, t]) = [s3, s2t, st2, t3], and the quadratic

polynomials that vanish on the image include

z( 3

0
)z( 1

2
) − z2( 2

1
) , z( 3

0
)z( 0

3
) − z( 2

1
)z( 1

2
) , and z( 2

1
) − z( 0

3
)z

2
( 1

2
) .

The image ν1,3(P
1) is the rational normal (or monomial) curve, depicted in U( 3

0
) below.

z( 2

1
)

z( 1

2
)

z( 0

3
)

Theorem 1.5.3. The image νn,d(P
n) ⊂ P(

n+d
n )−1 is the subvariety defined by the vanishing

of the quadratic polynomials

zαzβ − zγzδ for α, β, γ, δ ∈ An,d with α + β = γ + δ , (1.19)

and it is isomorphic to Pn.
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The image of νn,d is called the Veronese variety, and νn,d is the Veronese embedding.

Proof. We observed that these quadratics (1.19) vanish on νn,d(P
n).

Let X ⊂ P(
n+d
n )−1 be the variety defined by the vanishing of the quadratics (1.19) and

let z ∈ X. In Exercise 3, you will show that there is at least one i = 0, . . . , n such that
zdei 6= 0. (Here, ei is the ith standard basis vector so that dei is the exponent of xd

i . In
Example 1.5.1 this was that one of x = z( 2

0
) or z = z( 0

2
) did not vanish.) Thus z ∈ Udei .

Define ϕi on the affine patch X ∩ Udei by

ϕi(z) = [zej+(d−1)ei | j = 0, . . . , n] .

(Here, the subscript ej+(d−1)ei is the exponent of xjx
d−1
i .) Then ϕi : X∩Udei → Ui ⊂ Pn

is an inverse to νn,d on Ui, showing that X ∩Udei = νn,d(Ui) = νn,d(P
n)∩Udei . Thus these

ϕi piece together to define a regular map ϕ : νn,d(P
n) → Pn that is inverse to νn,d. This

completes the proof.

The value of the Veronese embedding is that if f ∈ K[x] is any form of degree d, then

there is a linear form Λf on P(
n+d
n )−1 such that f = ν∗

n,d(Λf ). More precisely,

f =
∑

α∈An,d

cαx
α = ν∗

n,d

( ∑

α∈An,d

cαzα

)
. (1.20)

Then νn,d(V(f)) = νn,d(P
n) ∩ V(Λf ). Extending this to a basis of I(X)d for d large

enough shows that any subvariety X of Pn is isomorphic to a linear section of some
Veronese variety. Consequently, any projective variety is isomorphic to a variety defined
by equations of degree at most two.

Furthermore, if f is a degree d form on Pn with corresponding linear form Λf on

P(
n+d
n )−1, then Uf = Pn r V(f) is an affine variety as it is isomorphic to νn,d(P

n) ∩ UΛf
.

Consequently, for any projective variety X ⊂ Pn and any homogeneous element f of its
coordinate ring, the set Xf := X r V(f) = X ∩ Uf is an affine variety. Lemma 1.4.13
extends to these more general affine charts Uf of Pn. That is, a subset X ⊂ Pn is a variety
if and only if Xf ⊂ Uf is an affine variety for every homogeneous form f .

This is related to maps of projective varieties. Suppose that ϕ : X → Pm is a regular
map defined on part of X by ϕ(x) = [f0(x), . . . , fm(x)] for f0, . . . , fm homogeneous ele-
ments of K[X] of the same degree. Then ϕ is defined as a map of affine varieties on each
affine patch Xfi .

The product of affine varieties required no special treatment as the product Km ×Kn

of two affine spaces is again an affine space, Km+n. This is not the case with projective
spaces. To remedy this, we identify Pm × Pn with a subvariety of the projective space
Pmn+m+n, and use this identification to help understand subvarieties of Pm × Pn.

Let x0, . . . , xm and y0, . . . , yn be homogeneous coordinates for Pm and Pn, respectively.
Let zi,j for i = 0, . . . ,m and j = 0, . . . , n be homogeneous coordinates for Pmn+m+n. (Note
that (m+1)(n+1)−1 = mn+m+n.) Define a map σm,n : P

m × Pn → Pmn+m+n by

σm,n(x, y) = z , where zi,j = xiyj .
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This map becomes more clear when lifted to the affine cones over these projective spaces,
where it is the map Km+1 ×Kn+1 → Matm+1,n+1(K) that sends a pair of column vectors
(x, y) to their outer product xyT ∈ Matm+1,n+1(K). The image is the set of rank 1
matrices, which is defined by the vanishing of the quadratic polynomials,

det

(
zi,j zi,l
zk,j zk,l

)
= zi,jzk,l − zi,lzk,j for 0 ≤ i < k ≤ m and 0 ≤ j < l ≤ n . (1.21)

This is a special case of Exercise 9(a) in Section 1.1.

Theorem 1.5.4. The image σm,n(P
m × Pn) ⊂ Pmn+m+n is the subvariety defined by the

vanishing of the quadratic polynomials (1.21). The map σm,n admits an inverse.

Call the map σm,n the Segre map and its image the Segre variety. Exercise 5 explores
the Segre variety P1 × P1 ⊂ P3.

Proof. We sketch the proof, which is similar to that of Theorem 1.5.3, and leave the
details as Exercise 6. For the inverse to σm,n, suppose that X ⊂ Pmn+m+n satisfies the
equations (1.21). For each index k, l of a coordinate of Pmn+m+n, we have an affine patch
Uk,l := {z ∈ Pmn+m+n | zk,l 6= 0}. Define a map to Pm×Pn on the affine patch X ∩Uk,l by

ϕk,l(z) =
(
[zi,l | i = 0, . . . ,m] , [zk,j | j = 0, . . . , n]

)
.

Then ϕk,l is an isomorphism between the affine varieties X ∩ Uk,l and Uk × Ul.

This proof identifies affine patchesX∩Uk,l with affine spaces Uk×Ul ≃ Km×Kn ⊂ Pm×
Pn, and could be used to put the structure of an algebraic variety on the product Pm×Pn,
much as in differential geometry. Another approach is intrinsic: define subvarieties of
Pm × Pn directly as we did with projective space. A third approach is extrinsic: use the
Segre embedding to define subvarieties of Pm × Pn. The first, using a covering by affine
varieties to give Pm × Pn the structure of an algebraic variety, is the starting point for
the general development of algebraic schemes that we do not pursue here. We develop
the second and third approaches and show they coincide. That they give the same notion
of subvariety as the first follows from the application of Lemma 1.4.13 to Pmn+m+n and
σm,n(P

m × Pn).
Both the intrinsic and extrinsic approaches begin with the same definition. A mono-

mial xαyβ in K[x0, . . . , xn, y0, . . . , ym] = K[x; y] has bidegree (a, b) where a = deg(xα)
and b = deg(yβ). For example, the bidegree of x0x

3
1y0y2y3 is (4, 3). A polynomial

g(x; y) ∈ K[x; y] is bihomogeneous of bidegree (a, b) if each of its monomials has bide-
gree (a, b). The same discussion from Section 1.4 that led us to understand the role of
homogeneous ideals for projective varieties leads to bihomogeneous ideals defining subsets
of Pm × Pn.

We may also ask what are the subsets X of Pm × Pn whose image σm,n(X) is a
subvariety of Pmn+m+n? As σm,n is given by bilinear monomials, the pullback σ∗(f) of
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a form of degree d in z is a form of degree 2d that is bihomogeneous of bidegree (d, d).
Consequently, a subset X of Pm × Pn whose image σm,n(X) is a subvariety is defined by
bihomogeneous polynomials g(x; y) with diagonal bidegree (a, a).

To reconcile these two approaches, let g(x; y) be a bihomogeneous polynomial with a
non-diagonal bidegree (a, b) and suppose that a = b+ k with k > 0. Observe that

V(g(x; y)) = V(ykj g(x; y) | j = 0, . . . , n) . (1.22)

The same observation, but with x when a < b shows that any subset of Pm × Pn defined
by bihomogeneous polynomials may also be defined by bihomogeneous polynomials with
a diagonal bidegree.

We follow the discussion leading up to Lemma 1.4.13 to define subvarieties of Pm×Kn.
If we restrict the second factor of Pm × Pn to U0 ≃ Kn and dehomogenize bihomogeneous
forms with respect to y0, we see that subvarieties of Pm × Kn are given by polynomials
f(x; y) ∈ K[x0, . . . , xm, y1, . . . , yn] that are homogeneous in x, but with no restriction on
y. We have shown the following characterization of subvarieties of products.

Proposition 1.5.5. A subvariety X ⊂ Pm × Pn is defined by a system of bihomogeneous

polynomials f1(x; y), . . . , fr(x; y). A subvariety X ⊂ Pm × Kn is defined by a system of

polynomials g1(x; y), . . . , gr(x; y) that are homogeneous in x.

Let X, Y be varieties. Then X×Y is a variety, as it is defined by the set of polynomials
{f(x)g(y) | f ∈ I(X), g ∈ I(Y )}. When both X and Y are affine, this was discussed in
Section 1.1, when both are projective this is a set of bihomogeneous polynomials, and if
X is projective and Y affine, then these are homogeneous in the first set of variables. This
description of subvarieties of products of two projective spaces or of a projective space
and an affine space extends in a natural way to arbitrary finite products of projective
spaces with affine space; we leave the details to the reader.

In Example 1.4.4 we remarked that when K = C or K = R, projective space is compact
in the usual (Euclidean) topology, and consequently the projection maps Pm × Pn → Pn

and Pm × Kn → Kn are proper in that the image of a closed set is also closed. This
remains true, whatever the field, if we replace the property of being closed by that of
being a subvariety. This will be a consequence of the following theorem.

Theorem 1.5.6. The image of a subvariety X ⊂ Pm × Pn under the projection to Pn is

again a subvariety, and the same for a subvariety of Pm ×Kn under projection to Kn.

Before proving Theorem 1.5.6, we use it to show that the image of a projective variety
under a map is a variety. That is, maps from projective varieties have the same property
as finite maps of affine varieties. You will see in the proof of Theorem 1.5.6 that the
reason is similar; points in a fiber cannot disappear.

A first step is to introduce a general construction. Let ϕ : X → Y be a regular map
of algebraic varieties (projective or affine). The graph of ϕ is the set

Γ := {(x, y) ∈ X × Y | x ∈ X and ϕ(x) = y} .
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Let πX and πY be the maps that project Γ to the first and second factors of X × Y ,
respectively, and ι : x 7→ (x, f(x)) ∈ X × Y the natural map from X to Γ. You are asked
to prove the following in Exercise 9.

Lemma 1.5.7. The graph Γ of ϕ is a subvariety of X × Y . The projection π1 to X is an

isomorphism and ϕ is the composition π2 ◦ ι.

Corollary 1.5.8. If ϕ : X → Y is a regular map of projective varieties, then its image

ϕ(X) is a subvariety of Y .

Proof. Let Γ ⊂ X × Y be the graph of ϕ. Suppose that X is a subvariety of Pm and Y is
a subvariety of Pn. Then Γ is a subvariety of Pm × Pn. By Theorem 1.5.6 the projection
of Γ to Pn, which is the image ϕ(X), is a subvariety of Pn, and hence of Y .

Proof of Theorem 1.5.6. By Lemma 1.4.13, it suffices to prove the statement about pro-
jection to Kn, as we may argue locally on the affine patches U0, . . . , Un of Pn. Let
X ⊂ Pm × Kn be a subvariety. By Proposition 1.5.5, X is defined by the vanishing
of finitely many polynomials

g1(x; y) , g2(x; y) , . . . , gs(x; y) ∈ K[x0, . . . , xm , y1, . . . , yn] ,

where each gi is homogeneous of degree di in the x variables and with no condition on y.
Let π : Pm × Kn → Kn be the projection. A point b ∈ Km lies in the image π(X) if

and only if the system of homogeneous polynomials

g1(x; b) = g2(x; b) = · · · = gs(x; b) = 0 ,

has a solution in Pm. By Lemma 1.4.9 this holds if and only if the ideal I(b) these
polynomials generate does not contain m0(x)

d for any d. Since m0(x)
d is generated by the

vector space K[x]d of all forms of degree d, this is equivalent to I(b)d 6= K[x]d, for all d.
This degree d component I(b)d of I(b) is the image of the linear map

Λd(b) : K[x]d−d1 ⊕ · · · ⊕K[x]d−ds −→ K[x]d ,

given by (f1, . . . , fs) 7→ f1g1(x; b) + · · · + fsgs(x; b). If we write the linear map Λd(b) in
terms of the bases of monomials of K[x]d and K[x]d−di , we obtain a matrix Md(b) with
entries the coefficients of the monomials in x in the gi(x; b), which are polynomials in b.
Thus I(b)d 6= K[x]d if and only if Λd(b) is not surjective if and only if the maximal minors
of Md(b) vanish.

We conclude that b lies in π(X) if and only if all the maximal minors of Md(b) vanish
for all d. But this is a collection of polynomials in K[y1, . . . , yn], which shows that π(X)
is an affine subvariety of Kn.

We close with an extension of finite maps from affine varieties to projective varieties.
If ϕ : X → Pm is a regular map from a projective variety X, then its image ϕ(X) is a
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subvariety of Pm. This map is finite if for every linear form Λ ∈ K[y0, . . . , ym] on Pm, the
corresponding map of affine varieties

ϕ : X \ V(ϕ∗(Λ)) −→ ϕ(X) \ V(Λ)

is a finite map. We show that linear projections are finite maps.

Theorem 1.5.9. Let X ⊂ Pn be a projective variety and L ⊂ Pn be a linear subspace

disjoint from X. Then the linear projection with center L is a finite map π : X → π(X).

Proof. Let m := n− dim(L)−1, so that π : X → Pm, and let Λ be a linear form on
Pm. Linear forms on Pm pull back to linear forms on Pn that vanish along L. Choosing
coordinates y0, . . . , ym on Pm, we may assume that Λ = Λ0,Λ1, . . . ,Λm are independent
linear forms on Pn vanishing along L with π defined by yi = Λi. We show that

π : XΛ0
= X \ V(Λ0) −→ π(X) \ V(y0)

is a finite map. That is, we show that the corresponding extension of coordinate rings is a
finite extension. We will do this by showing that every element of K[XΛ0

] is integral over
the coordinate ring of π(X)r V(y0), which is its subring generated by Λ1

Λ0
, . . . , Λm

Λ0
.

By Corollary 1.4.14, an element of K[XΛ0
] is the restriction of a rational function

f

Λd
0

, where f is a form of degree d on Pn. Since V(Λd
0, . . . ,Λ

d
m) = L is disjoint from X,

the degree d forms (Λd
0, . . . ,Λ

d
m, f) define a regular map ψ : X → Pm+1. Let g1, . . . , gr ∈

K[z0, . . . , zm+1] be homogeneous forms that define the image ψ(X) as a subvariety of Pm+1.
We just observed that ∅ = L ∩ X = V(Λd

0, . . . ,Λ
d
m) ∩ X = ψ−1(V(z0, . . . , zm)).

This implies that ∅ = V(z0, . . . , zm) ∩ ψ(X) = V(z0, . . . , zm, g1, . . . , gr) in Pm+1. By
Lemma 1.4.9, there is some N ∈ N such that m

N
0 ⊂ 〈z0, . . . , zm, g1, . . . , gr〉, where

m0 = 〈z0, . . . , zm+1〉 is the irrelevant ideal of Pm+1. As zNm+1 ∈ m
N
0 , there are forms

p0, . . . , pm, q1, . . . , qr ∈ K[z0, . . . , zm+1] such that

zNm+1 =
m∑

i=0

zipi +
r∑

j=1

gjqj .

Restricting to the homogeneous part of this expression, we may assume that deg(pi) =
N − 1. Set

F := zNm+1 −
m∑

i=0

zipi ∈ K[z0, . . . , zm+1] .

Then F = 0 in K[ψ(X)], and thus 0 = ψ∗(F ) in K[X].
Since deg(pi) = N − 1, zm+1 has degree at most N − 1 in the sum

∑m

i=0 zipi. Thus, if
we write F as a polynomial in zm+1, we obtain

F = zNm+1 +
N−1∑

i=0

zim+1AN−i(z0, . . . , zm) ,
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where Ai is a form of degree i. Then the pullback ψ∗(F ) is

fN +
N−1∑

i=0

f iAN−i(Λ
d
0, . . . ,Λ

d
m) .

Dividing this expression by ΛNd
0 , we obtain

(
f

Λd
0

)N

+
N−1∑

i=0

(
f

Λd
0

)i

AN−i

(
1,
(

Λ1

Λ0

)d

, . . . ,
(

Λm

Λ0

)d
)

.

As this is 0 in K[XΛ0
], we have shown that f

Λd
0

∈ K[XΛ0
] is integral over its subring

generated by Λ1

Λ0
, . . . , Λm

Λ0
, which is K[π(X) ∩ U0]. This completes the proof that π : X →

π(X) is a finite map of projective varieties.

Exercises

1. Show that if f0, . . . , fm ∈ K[x] are forms of the same degree that do not simultane-
ously vanish and if V(f0, . . . , fm) = ∅, then (1.16) defines a map ϕ : Pn → Pm.

2. Show that the number of monomials in x0, . . . , xn of degree d is
(
n+d

n

)
=

(
n+d

d

)
.

3. Complete the proof of Theorem 1.5.3, verifying the claims made.

4. The quadratic Veronese map νn,2 : P
n → P(

n+2

2 )−1 may be written as zi,j = xixj for

0 ≤ i ≤ j ≤ n. Identify P(
n+2

2 )−1 with the projective space on (n+1)× (n+1) sym-
metric matrices and show that the quadratic Veronese variety is the projectivization
of the set of symmetric matrices of rank 1.

5. Show that the image of the Segre map σ1,1 : P
1 × P1 → P3 is the projectivization of

hyperbolic paraboloid z3 = z1z2.

z1

z2

z3

V(z1z2−z3)

6. Complete the proof of Theorem 1.5.4.
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7. Explain why the set V(f) ⊂ Pm×Pn is well-defined for a bihomogeneous polynomial
f(x, y) ∈ K[x; y] and prove that for any subset Z ⊂ Pm×Pn its ideal I(Z) ⊂ K[x; y]
is bihomogeneous.

8. Prove the equality (1.22). Hint: saturate with respect to m0(y).

9. Prove Lemma 1.5.7.

1.6 Notes

This needs to be rewritten. Most of the material in this chapter is standard material within
courses of algebraic geometry or related courses. User-friendly, introductory texts to these
topics include the books of Beltrametti, Carletti, Gallarati, and Monti Bragadin [6], Cox,
Little, O’Shea [25], Holme [62], Hulek [63], Perrin [102], Smith, Kahanpää, Kekäläinen,
and Traves [129]. Advanced, in-depth treatments from the viewpoint of modern, abstract
algebraic geometry can be found in the books of Eisenbud [35], Harris [48], Hartshorne
[49], and Shafarevich [126]. Our treatment here and in Chapter 3 is most influenced by
Shafarevich.

If the polynomials f1, . . . , fm ∈ K[x1, . . . , xn] over an algebraically closed K do not
have a common zero, then Hilbert’s Nullstellensatz implies a polynomial identity of the
form

∑
gifi = 1 with g1, . . . , gm ∈ K[x1, . . . , xn]. However, the degrees of the polynomials

in such a representation can grow doubly exponentially in the number n of variables, see
Kollár [72].
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