
Chapter 2

Symbolic algorithms

Symbolic algorithms, from resultants to Gröbner bases and beyond, have long been im-
portant in the use and application of algebraic geometry. The rise of computers has
only increased their importance and they are now an indispensable part of the toolkit of
modern algebraic geometry. We illustrate their utility for solving systems of equations.

2.1 Resultants and Bézout’s Theorem

Resultants arose in the 19th century to provide symbolic algorithms for some operations
such as elimination. They offer an approach to solving systems of polynomials in two
variables.

The key algorithmic step in the Euclidean algorithm for the greatest common divisor
(gcd) of univariate polynomials f and g in K[x] with n = deg(g) ≥ deg(f) = m,

f = f0x
m + f1x

m−1 + · · ·+ fm−1x+ fm

g = g0x
n + g1x

n−1 + · · ·+ gn−1x + gn ,
(2.1)

is to replace g by

g − g0
f0
xn−m · f ,

which has degree at most n−1. (Note that f0 · g0 6= 0.) We often want to avoid division
(e.g., when K is a function field). Resultants detect common factors without division.

Let K be any field. Let K[x]ℓ be the set of univariate polynomials of degree at most ℓ.
(This differs from the use in Chapter 1, where K[X]ℓ consists of all homogeneous forms
of degree ℓ.) This is a vector space over K of dimension ℓ+1 with an ordered basis of
monomials xℓ, . . . , x, 1. Given f and g as in (2.1), consider the linear map

Lf,g : K[x]n−1 ×K[x]m−1 −→ K[x]m+n−1

(h(x), k(x)) 7−→ f · h+ g · k .

The domain and range of Lf,g each have dimension m+ n.
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Lemma 2.1.1. The polynomials f and g have a nonconstant common divisor if and only
if kerLf,g 6= {(0, 0)}.
Proof. Suppose first that f and g have a nonconstant common divisor, p. Then there are
polynomials h and k with f = pk and g = ph. As p is nonconstant, deg(k) < deg(f) = m
and deg(h) < deg(g) = n so that (h,−k) ∈ K[x]n−1 ×K[x]m−1. Since

fh− gk = pkh− phk = 0 ,

we see that (h,−k) is a non-zero element of the kernel of Lf,g.
Suppose that f and g are relatively prime and let (h, k) ∈ kerLf,g. Since 〈f, g〉 = K[x],

there exist polynomials p and q with 1 = gp+ fq. Using 0 = fh+ gk we obtain

k = k · 1 = k(gp+ fq) = gkp+ fkq = −fhp+ fkq = f(kq − hp) .

This implies that k = 0 for otherwise m−1 ≥ deg(k) ≥ deg(f) = m, which is a contradic-
tion. We similarly have h = 0, and so kerLf,g = {(0, 0)}.

The Sylvester matrix is the matrix of the linear map Lf,g in the ordered bases of
monomials for K[x]m−1 ×K[x]n−1 and K[x]m+n−1 When f and g have the form (2.1), it is

Syl(f, g; x) = Syl(f, g) :=




f0 g0 0
... f0 0 g1

. . .

fm−1

...
. . .

... g0

fm
...

. . .
... g1

fm f0 gn−1

...
. . .

... gn
. . .

...

0
. . .

...
. . . gn−1

fm 0 gn




. (2.2)

Note that the sequence f0, . . . , f0, gn, . . . , gn lies along the main diagonal and the left side
of the matrix has n columns while the right side has m columns.

We often treat the coefficients f0, . . . , fm, g0, . . . , gm of f and g as variables. That is,
we will regard them as algebraically independent over Q or Z. Any formulas proven under
this assumption remain valid when the coefficients of f and g lie in any field or ring.

The (Sylvester) resultant Res(f, g) is the determinant of the Sylvester matrix. To
emphasize that the Sylvester matrix represents the map Lf,g in the basis of monomials in
x, we also write Res(f, g; x) for Res(f, g). We summarize some properties of resultants,
which follow from its definition and from Lemma 2.1.1.

Theorem 2.1.2. The resultant of nonconstant polynomials f, g ∈ K[x] is an integer
polynomial in the coefficients of f and g. The resultant vanishes if and only if f and g
have a nonconstant common factor.
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We give another expression for the resultant in terms of the roots of f and g.

Lemma 2.1.3. Suppose that K contains all the roots of the polynomials f and g so that

f(x) = f0

m∏

i=1

(x− ai) and g(x) = g0

n∏

i=1

(x− bi) ,

where a1, . . . , am ∈ K are the roots of f and b1, . . . , bn ∈ K are the roots of g. Then

Res(f, g; x) = fn
0 g

m
0

m∏

i=1

n∏

j=1

(ai − bj) . (2.3)

In Exercise 2 you are asked to show that this implies the Poisson formula,

Res(f, g; x) = fn
0

m∏

i=1

g(ai) = (−1)mngm0

n∏

i=1

f(bi) .

Proof. We express these in Z[f0, g0, a1, . . . , am, b1, . . . , bn]. Recall that the coefficients of
f and g are essentially the elementary symmetric polynomials in their roots,

fi = (−1)if0ei(a1, . . . , am) and gi = (−1)ig0ei(b1, . . . , bn) .

We claim that both sides of (2.3) are homogeneous polynomials of degree mn in the
variables a1, . . . , bn. This is immediate for the right hand side. For the resultant, we
extend our notation, setting fi := 0 when i < 0 or i > m and gi := 0 when i < 0 or i > n.
Then the entry in row i and column j of the Sylvester matrix is

Syl(f, g; x)i,j =

{
fi−j if j ≤ n ,
gn+i−j if n < j ≤ m+ n .

The determinant is a signed sum over permutations w of {1, . . . ,m+n} of terms

n∏

j=1

fw(j)−j ·
m+n∏

j=n+1

gn+w(j)−j .

Since fi and gi are each homogeneous of degree i in the variables a1, . . . , bn and 0 is
homogeneous of any degree, this term is homogeneous of degree

n∑

j=1

w(j)−j +
m+n∑

j=n+1

n+ w(j)−j = mn+
m+n∑

j=1

w(j)−j = mn ,

which proves the claim.
The resultant Res vanishes when ai = bj, which implies that Res lies in the ideal

〈ai − bj〉. Thus the resultant is a multiple of the double product in (2.3). As its degree is
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mn, it is a scalar multiple. We determine this scalar. The term in Res(f, g) which is the
product of diagonal entries of the Sylvester matrix is

fn
0 g

m
n = (−1)mnfn

0 g
m
0 en(b1, . . . , bn)

m = (−1)mnfn
0 g

m
0 b

m
1 · · · bmn .

This is the only term of Res(f, g) involving the monomial bm1 · · · bmn . The corresponding
term on the right hand side of (2.3) is

fn
0 g

m
0 (−b1)

m · · · (−bn)
m = (−1)mnfn

0 g
m
0 b

m
1 · · · bmn ,

which completes the proof.

Remark 3.2.12 uses geometric arguments to show that the resultant is irreducible and
gives another characterization of resultants, which we give below.

Theorem 2.1.4. The resultant polynomial is irreducible. It is the unique (up to sign)
irreducible integer polynomial in the coefficients of f and g that vanishes on the set of
pairs of polynomials (f, g) which have a common root.

Example 2.1.5. We give an application of resultants. A polynomial f ∈ K[x] of degree
n has fewer than n distinct roots in the algebraic closure of K when it has a factor in
K[x] of multiplicity greater than 1, and in that case f and its derivative f ′ have a factor
in common. The discriminant of f is a polynomial in the coefficients of f which vanishes
precisely when f has a repeated factor. It is defined to be

discn(f) := (−1)(
n

2) 1

f0
Res(f, f ′) = f 2n−2

0

∏

i<j

(ai − aj)
2 ,

where a1, . . . , an are the roots of f(x). ⋄

Resultants may also be used to eliminate variables from multivariate equations. The
first step towards this is another interesting formula involving the Sylvester resultant,
showing that it has a canonical expression as a polynomial linear combination of f and g.

Lemma 2.1.6. Given polynomials f, g ∈ K[x], there are polynomials h, k ∈ K[x] whose
coefficients are universal integer polynomials in the coefficients of f and g such that

f(x)h(x) + g(x)k(x) = Res(f, g) . (2.4)

Proof. Set K := Q(f0, . . . , fm, g0, . . . , gn), the field of rational functions (quotients of
integer polynomials) in the variables f0, . . . , fm, g0, . . . , gn and let f, g ∈ K[x] be univariate
polynomials as in (2.1). Then gcd(f, g) = 1 and so the map Lf,g is invertible.

Set (h, k) := L−1
f,g(Res(f, g)) so that

f(x)h(x) + g(x)k(x) = Res(f, g) ,
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with h ∈ K[x]n−1 and k ∈ K[x]m−1.
Recall Cramer’s formula (1.10) for the inverse of a n× n matrix M ,

det(M) ·M−1 = adjM , (2.5)

where adjM is the adjoint of M . Its (i, j)-entry is (−1)i+j · det(M̂j,i), where Mj,i is the
(n−1)× (n−1) matrix obtained from M by deleting its jth row and ith column.

Since det(Lf,g) = Res(f, g) ∈ K and Lf,g is K-linear, we have

L−1
f,g(Res(f, g)) = Res(f, g) · L−1

f,g(1) det(Lf,g) · L−1
f,g(1) = adj(Syl(f, g))(1) .

In the monomial basis of K[x]m+n−1 the polynomial 1 is the vector (0, . . . , 0, 1)T . Thus,
the coefficients of L−1

f,g(Res(f, g)) are the entries of the last column of ad(Syl(f, g)), which
are ± the minors of the Sylvester matrix Syl(f, g) with its last row removed. In particular,
these are integer polynomials in the variables f0, . . . , gn.

This proof shows that h, k ∈ Z[f0, . . . , fm, g0, . . . , gn][x] and that (2.4) holds as an ex-
pression in this polynomial ring with m+n+3 variables. It leads to a method to eliminate
variables. Suppose that f, g ∈ K[x1, . . . , xn] are multivariate polynomials. We may con-
sider them as polynomials in the variable xn whose coefficients are polynomials in the other
variables, that is, as polynomials in K(x1, . . . , xn−1)[xn]. Then the resultant Res(f, g; xn)
both lies in the ideal generated by f and g and in the subring K[x1, . . . , xn−1]. We examine
the geometry of this elimination of variables.

Suppose that 1 ≤ m < n and let π : Kn → Km be the coordinate projection

π : (a1, . . . , an) 7−→ (a1, . . . , am) .

Also, for I ⊂ K[x1, . . . , xn] set Im := I ∩K[x1, . . . , xm].

Lemma 2.1.7. Let I ⊂ K[x1, . . . , xn] be an ideal. Then π(V(I)) ⊂ V(Im). When K is
algebraically closed V(Im) is the smallest variety in Km containing π(V(I)).
Proof. Let us set X := V(I). For the first statement, suppose that a = (a1, . . . , an) ∈ X.
If f ∈ Im = I ∩K[x1, . . . , xm], then

0 = f(a) = f(a1, . . . , am) = f(π(a)) ,

which establishes the inclusion π(X) ⊂ V(Im). (For this we viewed f as a polynomial in
either x1, . . . , xn or in x1, . . . , xm.) This implies that V(I(π(X))) ⊂ V(Im).

Now suppose that K is algebraically closed. Let f ∈ I(π(X)). Then f ∈ K[x1, . . . , xm]
has the property that f(a1, . . . , am) = 0 for all (a1, . . . , am) ∈ π(X). But then f is an
element of K[x1, . . . , xn] that vanishes on X = V(I). By the Nullstellensatz, there is
a positive integer N such that fN ∈ I (as elements of K[x1, . . . , xn]). But then fN ∈
I ∩K[x1, . . . , xm] = Im, which implies that f ∈

√
Im. Thus I(π(X)) ⊂

√
Im, so that

V(I(π(X))) ⊃ V(
√

Im) = V(Im) ,

which completes the proof.
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The ideal Im = I ∩ K[x1, . . . , xm] is called an elimination ideal as the variables
xm+1, . . . , xn have been eliminated from the ideal I. By Lemma 2.1.7, elimination is the
algebraic counterpart to projection, but the correspondence is not exact. For example, the
inclusion π(V(I)) ⊂ V(I ∩ K[x1, . . . , xm]) may be strict. We saw this in Example 1.3.10
where the projection of the hyperbola V(xy−1) the x-axis has image K−{0} ( K = V (0),
but 〈0〉 = 〈xy − 1〉 ∩ K[x]. The missing point {0} of K1 corresponds to the coefficient x
of the highest power of y in xy − 1.

We solve the implicitization problem for plane curves using elimination.

Example 2.1.8. Explain why this works !Is implicitization emphasized in Chapter 1.1 ?

Consider the parametric plane curve

x = 1− t2, y = t3 − t . (2.6)

This is the image of the space curve C := V(t2 − 1 + x, t3 − t − y) under the projection
(x, y, t) 7→ (x, y). We display this with the t-axis vertical and the xy-plane at t = −2.

x
y

π

❄

C

π(C)

By Lemma 2.1.7, the plane curve is defined by 〈t2 − 1 + x, t3 − t− y〉 ∩K[x, y]. If we set

f(t) := t2 − 1 + x and g(t) := t3 − t− y ,

then the Sylvester resultant Res(f, g; t) is

det




1 0 0 1 0
0 1 0 0 1

x−1 0 1 −1 0
0 x−1 0 −y −1
0 0 x−1 0 −y




= y2 − x2 + x3 ,

which is the implicit equation of the parameterized cubic π(C) (2.6). ⋄

The ring K[x, y] of bivariate polynomials is a subring of the ring K(x)[y] of polynomials
in y whose coefficients are rational functions in x. Suppose that f, g ∈ K[x, y]. Considering
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f and g as elements of K(x)[y], the resultant Res(f, g; y) is the determinant of their
Sylvester matrix expressed in the basis of monomials in y. By Theorem 2.1.2, Res(f, g; y)
is a univariate polynomial in x which vanishes if and only if f and g have a common factor
in K(x)[y]. In fact it vanishes if and only if f(x, y) and g(x, y) have a common factor in
K[x, y] with positive degree in y, by the following version of Gauss’s lemma for K[x, y].

Lemma 2.1.9. Polynomials f and g in K[x, y] have a common factor of positive degree
in y if and only if they have a common factor in K(x)[y].

Proof. The forward direction is clear. For the reverse, suppose that

f = h · f and g = h · g (2.7)

is a factorization in K(x)[y] where h has positive degree in y.
There is a polynomial d ∈ K[x] which is divisible by every denominator of a coefficient

of h, f , and g. Multiplying the expressions (2.7) by d2 gives

d2f = (dh) · (df) and d2g = (dh) · (dg) ,

where dh, df , and dg are polynomials in K[x, y]. Let p(x, y) ∈ K[x, y] be an irreducible
polynomial factor of dh having positive degree in y. Then p divides both d2f and d2g.
However, p cannot divide d as d ∈ K[x] and p has positive degree in y. Therefore p(x, y)
is the desired common polynomial factor of f and g.

Let π : K2 → K be the projection forgetting the last coordinate, π(x, y) = x. Set
I := 〈f, g〉 ∩ K[x]. By Lemma 2.1.6, the resultant Res(f, g; y) lies in I. Combining this
with Lemma 2.1.7 gives the chain of inclusions

π(V(f, g)) ⊂ V(I) ⊂ V(Res(f, g; y)) , (2.8)

with the first inclusion an equality if K is algebraically closed and π(V(f, g)) is a variety.
By Exercise 3 in Section 1.1 if V(f, g) is a finite set, then it is a variety.

We now suppose that K is algebraically closed. Let f, g ∈ K[x, y] and write each as
polynomials in y with coefficients in K[x],

f = f0(x)y
m + f1(x)y

m−1 + · · ·+ fm−1(x)y + fm(x)

g = g0(x)y
n + g1(x)y

n−1 + · · ·+ gn−1(x)y + gn(x) ,

where neither f0(x) nor g0(x) is the zero polynomial.

Theorem 2.1.10 (Extension Theorem). If a ∈ V(〈f, g〉 ∩ K[x]) r V(f0(x), g0(x)), then
there is some b ∈ K with (a, b) ∈ V(f, g).

With I as in (2.8), this establishes the chain of inclusions of subvarieties of K,

V(I)r V(f0, g0) ⊂ π(V(f, g)) ⊂ V(I) ⊂ V(Res(f, g; y)) .

If either of f0 or g0 are constant, or if gcd(f, g) = 1, then V(I) = V(Res(f, g; y)).
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Proof. Let a ∈ V(I) r V(f0, g0). Suppose first that f0(a) · g0(a) 6= 0. Then f(a, y) and
g(a, y) are polynomials in y of degrees m and n, respectively. It follows that the Sylvester
matrix Syl(f(a, y), g(a, y)) has the same format (2.2) as the Sylvester matrix Syl(f, g; y),
and is in fact obtained from Syl(f, g; y) by the substitution x = a.

This implies that Res(f(a, y), g(a, y)) is the evaluation of the resultant Res(f, g; y) at
x = a. Since Res(f, g; y) ∈ I and a ∈ V(I), this evaluation is 0. By Theorem 2.1.2, f(a, y)
and g(a, y) have a nonconstant common factor. As K is algebraically closed, they have a
common root, say b. But then (a, b) ∈ V(f, g), and so a ∈ π(V(f, g)).

Now suppose that f0(a) 6= 0 but g0(a) = 0. Since 〈f, g〉 = 〈f, g + yℓf〉, if we replace g
by g + yℓf where ℓ+m > n, then we are in the previous case.

Example 2.1.11. Suppose that f, g ∈ C[x, y] are the polynomials,

f = (5− 10x+ 5x2)y2 + (−14 + 42x− 24x2)y + (5− 28x+ 19x2)

g = (5− 10x+ 5x2)y2 + (−16 + 46x− 26x2)y + (19− 36x+ 21x2)

Figure 2.1 shows the curves V(f) and V(g), which meet in three points,

V(g) ✲

V(g) ✲

V(g)

V(f)
❈
❈
❈❈❖

✛ ✛

x

y

Figure 2.1: Comparing resultants to elimination.

V(f, g) = { (−0.9081601, 3.146707) , (1.888332, 3.817437) , (2.769828, 1.146967) } .

Thus π(V(f, g)) consists of three points which are roots of h = 4x3−15x2+4x+19, where
〈h〉 = 〈f, g〉 ∩K[x]. However, the resultant is

Res(f, g; y) = 160(4x3 − 15x2 + 4x+ 19)(x− 1)4 ,

whose roots are shown on the x-axis, including the point x = 1 with multiplicity four. ⋄

Corollary 2.1.12. If the coefficients of the highest powers of y in f and g do not involve
x and if gcd(f, g) = 1, then V(〈f, g〉 ∩K[x]) = V(Res(f, g; x)).
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Lemma 2.1.13. When K is algebraically closed, the system of bivariate polynomials

f(x, y) = g(x, y) = 0

has finitely many solutions in K2 if and only if f and g have no common factor.

Proof. We instead show that V(f, g) is infinite if and only if f and g do have a common
factor. If f and g have a common factor h(x, y) then their common zeroes V(f, g) include
V(h) which is infinite as h is nonconstant and K is algebraically closed.

Now suppose that V(f, g) is infinite. Its projection to at least one of the two coor-
dinate axes is infinite. Suppose that the projection π onto the x-axis is infinite. Set
I := 〈f, g〉 ∩ K[x], the elimination ideal. By the Theorem 2.1.10, we have π(V(f, g)) ⊂
V(I) ⊂ V(Res(f, g; y)). Since π(V(f, g)) is infinite, V(Res(f, g; y)) = K, which implies
that Res(f, g; y) is the zero polynomial. By Theorem 2.1.2 and Lemma 2.1.9, f and g
have a common factor.

Let f, g ∈ K[x, y] and suppose that neither Res(f, g; x) nor Res(f, g; y) vanishes so
that f and g have no common factor. Then V(f, g) consists of finitely many points. The
Extension Theorem gives the following algorithm to compute V(f, g).
Algorithm 2.1.14 (Elimination Algorithm).
Input: Polynomials f, g ∈ K[x, y] with gcd(f, g) = 1.
Output: V(f, g).

First, compute the resultant Res(f, g; x), which is not the zero polynomial. Then, for
every root a of Res(f, g; y), find all common roots b of f(a, y) and g(a, y). The finitely
many pairs (a, b) computed are the points of V(f, g). ⋄

The Elimination Algorithm reduces the problem of solving a bivariate system

f(x, y) = g(x, y) = 0 , (2.9)

to that of finding the roots of univariate polynomials.

Remark 2.1.15. This method of finding a univariate polynomial h(x) whose roots are the
x-coordinates of points in V(f, g), then substituting the roots of h into f and g to compute
V(f, g) is referred to as back solving. ⋄

Often we only want to count the number of solutions to a system (2.9), or give a
realistic bound for this number which is attained when f and g are generic polynomials.
The most basic such bound was given by Etienne Bézout in 1779. Our first step toward
establishing Bézout’s Theorem is an exercise in algebra and some bookkeeping. The
monomials in a polynomial of degree n in the variables x, y are indexed by the set

n := {(i, j) ∈ N2 | i+ j ≤ n} .
Let F := {fi,j | (i, j) ∈ m } and G := {gi,j | (i, j) ∈ n } be variables and consider
generic polynomials f and g of respective degrees m and n in K[F,G][x, y],

f(x, y) :=
∑

(i,j)∈m

fi,jx
iyj and g(x, y) :=

∑

(i,j)∈n

gi,jx
iyj .
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Lemma 2.1.16. This generic resultant Res(f, g; y) is a polynomial in x of degree mn.

Proof. Write

f :=
m∑

j=0

fj(x)y
m−j and g :=

n∑

j=0

gj(x)y
n−j ,

where the coefficients are univariate polynomials in x,

fj(x) :=

j∑

i=0

fi,m−jx
i and gj(x) :=

j∑

i=0

gi,n−jx
i .

Then the Sylvester matrix Syl(f, g; y) (2.2) has entries the polynomials fi(x) and gj(x),
and so the resultant Res(f, g; y) = det(Syl(f, g; y)) is a univariate polynomial in x.

As in the proof of Lemma 2.1.3, if we set fj := 0 when j < 0 or j > m and gj := 0
when j < 0 or j > n, then the entry in row i and column j of the Sylvester matrix is

Syl(f, g; y)i,j =

{
fi−j(x) if j ≤ n
gn+i−j(x) if n < j ≤ m+ n

The determinant is a signed sum over permutations w of {1, . . . ,m+n} of terms

n∏

j=1

fw(j)−j(x) ·
m+n∏

j=n+1

gn+w(j)−j(x) .

This is a polynomial of degree at most

n∑

j=1

w(j)−j +
m+n∑

j=n+1

n+ w(j)−j = mn+
m+n∑

j=1

w(j)−j = mn .

Thus Res(f, g; y) is a polynomial of degree at most mn in x.
We complete the proof by showing that the resultant does indeed have degree mn. The

product f0(x)
n · gn(x)m of the entries along the main diagonal of the Sylvester matrix has

leading term fn
0,m ·gmn,0 xmn and constant term fn

0,m ·gm0,n, and these are the only terms in the
expansion of the determinant of the Sylvester matrix involving either of these monomials
in the coefficients fi,j , gk,l.

We now state and prove Bézout’s Theorem. By general, we mean an element of the
complement of a proper subvariety. This notion is covered in more detail on Section 3.1.

Theorem 2.1.17 (Bézout’s Theorem). Two polynomials f, g ∈ K[x, y] either have a
common factor or else |V(f, g)| ≤ deg(f) · deg(g).

When |K| is at least max{deg(f), deg(g)}, this inequality is sharp in that the bound is
attained. When K is algebraically closed, the bound is attained when f and g are general
polynomials of the given degrees.
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Proof. Suppose that m := deg(f) and n = deg(g). By Lemma 2.1.13, if f and g are
relatively prime, then V(f, g) is finite. Let us extend K to its algebraic closure K, which
in infinite. We may change coordinates, replacing f by f(A(x, y)) and g by g(A(x, y)),
where A is an invertible affine transformation,

A(x, y) = (ax+ by + c, αx+ βy + γ) , (2.10)

with a, b, c, α, β, γ ∈ K and aβ−αb 6= 0. As K is infinite, we can choose these parameters
so that the constant terms and terms with highest power of x in each of f and g are non-
zero. By Lemma 2.1.16, this implies that the resultant Res(f, g; y) has degree at most
mn and thus at most mn zeroes. If we set I := 〈f, g〉 ∩ K[x], then this also implies that
V(I) = V(Res(f, g; x)), by Corollary 2.1.12.

We can furthermore choose the parameters in A so that the projection π : (x, y) 7→ x
is 1-1 on V(f, g), as V(f, g) is finite and K infinite. Thus

π(V(f, g)) = V(I) = V(Res(f, g; x)) ,

which implies the inequality of the theorem as |V(Res(f, g; y))| ≤ mn.
To see that the bound is sharp when |K| is large enough, let a1, . . . , am and b1, . . . , bn

be distinct elements of K. Note that the system

f :=
m∏

i=1

(x− ai) = 0 and g :=
n∏

i=1

(y − bi) = 0 (2.11)

has mn solutions {(ai, bj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, so the inequality is sharp.
Suppose now that K is algebraically closed. If the resultant Res(f, g; y) has fewer

than mn distinct roots, then either it has degree strictly less than mn or else it has a
multiple root. In the first case, its leading coefficient vanishes and in the second case, its
discriminant vanishes. But the leading coefficient and the discriminant of Res(f, g; y) are
polynomials in the

(
m+2
2

)
+
(
n+2
2

)
coefficients of f and g. Neither is the zero polynomial,

as they do not vanish when evaluated at the coefficients of the polynomials (2.11). Thus
the set of pairs of polynomials (f, g) with V(f, g) consisting of mn points in K2 is the

complement of a proper subvariety of K(m+2

2 )+(n+2

2 ).

Exercises

1. Verify the claims in the proof of Lemma 2.1.3. This may involve unique factorization
in polynomial rings and the Nullstellensatz.

2. Using the formula (2.3) deduce the Poisson formula for the resultant of univariate
polynomials f and g,

Res(f, g; x) = fn
0

m∏

i=1

g(ai) ,

where a1, . . . , am are the roots of f .
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3. Suppose that the polynomial g = g1 ·g2 factors. Show that the resultant also factors,
Res(f, g; x) = Res(f, g1; x) · Res(f, g2; x).

4. Prove the equality of the two formulas for the discriminant in Example 2.1.5. Hint:

First prove the formula: f ′(ai) = (a1−ai) · · · ̂(ai − aj) · · · (am−ai), where a1, . . . , am

are the roots of f and ̂(ai − aj) indicates this term is omitted.

5. Compute the discriminant of a general cubic x3 + ax2 + bx + c by taking the de-
terminant of a 5 × 5 matrix. Show that the discriminant of the depressed quartic
x4 + ax2 + bx+ c is

16a4c− 4a3b2 − 128a2c2 + 144ab2c− 27b4 + 256c3 .

2.2 Gröbner basics

Gröbner bases are a foundation for many algorithms to represent and manipulate varieties
on a computer. While these algorithms are important in applications, Gröbner bases are
also a useful theoretical tool. They will reappear in later chapters in both guises.

A motivating problem is that of recognizing when a polynomial f ∈ K[x1, . . . , xn] lies
in an ideal I. When I is radical and K is algebraically closed, this is equivalent to asking
whether or not f vanishes on V(I). For example, we may ask which of the polynomials
x3z − xz3, x2yz − y2z2 − x2y2, and/or x2y − x2z + y2z lies in the ideal

〈x2y−xz2+y2z, y2−xz+yz〉 ?

This ideal membership problem is easy for univariate polynomials. Suppose that I =
〈f(x), g(x), . . . , h(x)〉 is an ideal and F (x) is a polynomial in K[x], the ring of polynomials
in a single variable x. We determine if F (x) ∈ I via a two-step process.

1. Use the Euclidean Algorithm to compute ϕ(x) := gcd(f(x), g(x), . . . , h(x)).

2. Use the Division Algorithm to determine if ϕ(x) divides F (x).

This is valid, as I = 〈ϕ(x)〉. The first step is a simplification, where we find a simpler
(lower-degree) polynomial which generates I, while the second step is a reduction, where
we compute F modulo I. Both steps proceed systematically, operating on the terms of the
polynomials involving the highest power of x. A good description for I is a prerequisite
for solving our ideal membership problem.

We shall see how Gröbner bases give algorithms which extend this procedure to mul-
tivariate polynomials. In particular, a Gröbner basis of an ideal I gives a sufficiently
good description of I to solve the ideal membership problem. Gröbner bases are also the
foundation of algorithms that solve many other problems.

A monomial is a product of powers of the variables x1, . . . , xn. The exponent of a
monomial xα := xα1

1 xα2

2 · · · xαn
n is a vector α ∈ Nn. If we identify monomials with their

exponent vectors, multiplication of monomials corresponds to vector addition.
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Definition 2.2.1. A monomial ideal I ⊂ K[x1, . . . , xn] is an ideal which satisfies the
following two equivalent conditions.

(i) I is generated by monomials.

(ii) If f ∈ I, then every monomial of f lies in I. ⋄

One advantage of monomial ideals is that they are essentially combinatorial objects.
By Condition (ii), a monomial ideal is determined by the set of monomials which it
contains. Under the correspondence between monomials and their exponents, divisibility
of monomials corresponds to componentwise comparison of vectors.

xα|xβ ⇐⇒ αi ≤ βi , i = 1, . . . , n ⇐⇒ α ≤ β ,

which defines a partial order on Nn. Thus

(1, 1, 1) ≤ (3, 1, 2) but (3, 1, 2) 6≤ (2, 3, 1) .

The set O(I) of exponent vectors of monomials in a monomial ideal I has the property
that if α ≤ β with α ∈ O(I), then β ∈ O(I). Thus O(I) is an (upper) order ideal of the
poset (partially ordered set) Nn.

A set of monomials G ⊂ I generates I if and only if every monomial in I is divisible by
at least one monomial of G. A monomial ideal I has a unique minimal set of generators—
these are the monomials xα in I which are not divisible by any other monomial in I.

Let us look at some examples. When n = 1, monomials have the form xd for some
natural number d ≥ 0. If d is the minimal exponent of a monomial in I, then I = 〈xd〉.
Thus all univariate monomial ideals have the form 〈xd〉 for some d ≥ 0.

When n = 2, we may plot the exponents in the order ideal associated to a monomial
ideal. For example, the lattice points in the shaded region of Figure 2.2 represent the

y

x

Figure 2.2: Exponents of monomials in the ideal 〈y4, x2y4, x3y3, x5y, x6y2〉.

monomials in the ideal I := 〈y4, x2y4, x3y3, x5y, x6y2〉, with the generators marked. From
this picture we see that I is minimally generated by y4, x3y3, and x5y.

Since xayb ∈ I implies that xa+cyb+d ∈ I for any (c, d) ∈ N2, a monomial ideal
I ⊂ K[x, y] is the union of the shifted positive quadrants (a, b) + N2 for every monomial
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xayb ∈ I. It follows that the monomials in I are those above the staircase shape that is
the boundary of the shaded region. The monomials not in I lie under the staircase, and
they form a vector space basis for the quotient ring K[x, y]/I.

This notion of staircase for two variables makes sense when there are more variables.
The staircase of an ideal I consists of the monomials which are on the boundary of O(I).
Here is the staircase for the ideal 〈x5, x2y5, y6, x3y2z, x2y3z2, xy5z2, x2yz3, xy2z3, z4〉.

x

z

y

We offer a purely combinatorial proof that monomial ideals are finitely generated.

Lemma 2.2.2 (Dickson’s Lemma). Every monomial ideal is finitely generated.

Proof. We use induction on n. The case n = 1 was covered in the preceding examples.
Let I ⊂ K[x1, . . . , xn, y] be a monomial ideal. For each d ∈ N, observe that the set

{xα | xαyd ∈ I} ,

generates a monomial ideal Id of K[x1, . . . , xn], and the union of all such monomials,

{xα | xαyd ∈ I for some d ≥ 0} ,

generates a monomial ideal I∞ of K[x1, . . . , xn]. By our induction hypothesis, Id has a
finite generating set Gd, for each d = 0, 1, . . . ,∞.

Note that I0 ⊂ I1 ⊂ · · · ⊂ I∞. We must have I∞ = Id for some d < ∞. Indeed, each
generator xα ∈ G∞ of I∞ comes from a monomial xαyb in I, and we may let d be the
maximum of the numbers b which occur. Since I∞ = Id, we have Ib = Id for any b > d.
Note that if b > d, then we may assume that Gb = Gd as Ib = Id.

We claim that the finite set

G =
d⋃

b=0

{xαyb | xα ∈ Gb}

generates I. Indeed, let xαyb be a monomial in I. Since xα ∈ Ib, there is a generator
xγ ∈ Gb which divides xα. If b ≤ d, then xγyb ∈ G is a monomial dividing xαyb. If b > d,
then xγyd ∈ G as Gb = Gd and xγyd divides xαyb. Thus G generates I.
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A consequence of Dickson’s Lemma is that any strictly increasing chain of monomial
ideals is finite. Suppose that

I1 ⊂ I2 ⊂ I3 ⊂ · · ·
is an increasing chain of monomial ideals. Let I∞ be their union, which is another mono-
mial ideal. Since I∞ is finitely generated, there is some ideal Id which contains all gener-
ators of I∞, and so Id = Id+1 = · · · = I∞. We used this to prove Dickson’s lemma.

The key idea behind Gröbner bases is to determine what is meant by ‘term of highest
power’ in a polynomial having two or more variables. It turns out that there is no canonical
way to do this, so we must make a choice, which is encoded in the notion of a monomial
order. An order ≻ on monomials in K[x1, . . . , xn] is total if for monomials xα and xβ

exactly one of the following holds

xα ≻ xβ or xα = xβ or xα ≺ xβ .

(Note that we use both ≻ and ≺, where xα ≺ xβ if and only if xβ ≻ xα.)

Definition 2.2.3. A monomial order on K[x1, . . . , xn] is a total order ≻ on the monomials
in K[x1, . . . , xn] such that

(i) 1 is the minimal element under ≻.

(ii) ≻ respects multiplication by monomials: If xα ≻ xβ then xα · xγ ≻ xβ · xγ , for any
monomial xγ .

Conditions (i) and (ii) in Definition 2.2.3 imply that if xα is divisible by xβ, then
xα ≻ xβ. A well-ordering is a total order with no infinite descending chain, equivalently,
one in which every subset has a minimal element.

Lemma 2.2.4. Monomial orders are exactly the well-orderings ≻ on monomials that
satisfy Condition (ii) of Definition 2.2.3.

Proof. Let ≻ be a well-ordering on monomials that satisfies Condition (ii) of Defini-
tion 2.2.3. Suppose that ≻ is not a monomial order. Then there is some monomial xα

with 1 ≻ xα. By Condition (ii), we have 1 ≻ xα ≻ x2α ≻ x3α ≻ · · · , which contradicts ≻
being a well-order. Thus 1 is the ≻-minimal monomial.

Let ≻ be a monomial order and M be any set of monomials. Let I be the ideal
generated by M . By Dickson’s Lemma, I is generated by a finite set G of monomials.
We may assume that G ⊂ M , for if xα ∈ G rM , then as M generates I, there is some
xβ ∈ M that divides xα, and so we may replace xα by xβ in G. After finitely many such
replacements, we will have that G ⊂ M . Since G is finite, let xγ be the minimal monomial
in G under ≻. We claim that xγ is the minimal monomial in M .

Let xα ∈ M . Since G generates I and M ⊂ I, there is some xβ ∈ G which divides xα

and thus xα ≻ xβ. But xγ is the minimal monomial in G, so xα ≻ xβ ≻ xγ.
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The well-ordering property of monomials orders is key to what follows, as many proofs
use induction on ≻, which is only possible as ≻ is a well-ordering.

Example 2.2.5. Recall that the (total degree, deg(xα), of a monomial xα = xα1

1 · · · xαn
n

is α1 + · · ·+ αn. We describe four important monomial orders.

1. The lexicographic order ≻lex on K[x1, . . . , xn] is defined by

xα ≻lex x
β ⇐⇒

{
The first non-zero entry of the
vector α− β in Zn is positive.

}

2. The degree lexicographic order ≻dlx on K[x1, . . . , xn] is defined by

xα ≻dlx x
β ⇐⇒

{
deg(xα) > deg(xβ) or ,
deg(xα) = deg(xβ) and xα ≻lex x

β .

3. The degree reverse lexicographic order ≻drl K[x1, . . . , xn] is defined by

xα ≻drl x
β ⇐⇒





deg(xα) > deg(xβ) or ,
deg(xα) = deg(xβ) and the last non-zero entry of the

vector α− β in Zn is negative .

4. More generally, we have weighted orders. Let ω ∈ Rn be a vector with non-negative
components, called a weight. This defines a partial order ≻ω on monomials

xα ≻ω xβ ⇐⇒ ω · α > ω · β .

If all components of ω are positive, then ≻ω satisfies the two conditions of Defini-
tion 2.2.3. Its only failure to be a monomial order is that it may not be a total
order on monomials. (For example, consider ω = (1, 1, . . . , 1), then ω ·α is the total
degree of xα.) This may be remedied by picking a monomial order to break ties.
For example, if we use ≻lex, then we get a monomial order

xα ≻ω,lex xβ ⇐⇒
{

ω · α > ω · β or ,
ω · α = ω · β and xα ≻lex x

β

Another way to do this is to break the ties with a different monomial order, or a
different weight, and this may be done recursively.

A monomial order is graded if it refines the total degree partial order ≻(1,1,...,1). ⋄

You are asked to prove these are monomial orders in Exercise 8.
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Remark 2.2.6. We compare the first three orders on monomials of degrees 1 and 2 in
K[x, y, z] where the variables are ordered x ≻ y ≻ z.

x2 ≻lex xy ≻lex xz ≻lex x ≻lex y2 ≻lex yz ≻lex y ≻lex z2 ≻lex z

x2 ≻dlx xy ≻dlx xz ≻dlx y
2 ≻dlx yz ≻dlx z

2 ≻dlx x ≻dlx y ≻dlx z

x2 ≻drl xy ≻drl y
2 ≻drl xz ≻drl yz ≻drl z

2 ≻drl x ≻drl y ≻drl z ⋄

A term is a product axα of a non-zero scalar a ∈ K× with a monomial xα. Any
monomial order ≻ extends to terms by setting axα ≻ bxβ if xα ≻ xβ and ab 6= 0. We also
write axα º bxβ when ab 6= 0 and xα º xβ. This term order is not a partial order, but it
is well-founded in that it does not admit an infinite strictly decreasing chain.

The initial term in≻(f) of a polynomial f ∈ K[x1, . . . , xn] is the term of f that is
maximal with respect to ≻. If ≻ is lexicographic order with x ≻ y, then

in≻(3x
3y − 7xy10 + 13y30) = 3x3y .

When ≻ is understood, we may write in(f). In Exercise 9, you will show that taking
initial terms is multiplicative, which is a consequence that ≻ respects the multiplication
of monomials.

Example 2.2.7. The initial terms of a polynomial f with a weighted partial order ≻ω

have a geometric interpretation in terms of the Newton polytope (see Section A.1.1) of f .
For example, suppose that f is

x2 + 2x3 + 3y + 5x2y + 7y2 + 11xy2 + 13x2y2 + 17y3 + 19xy3 + 23y4 .

Figure 2.3 shows the exponent vectors of terms of f , along with the Newton polygon
of f . Then in(1,1)f = 13x2y2 + 19xy3 + 23y4, the terms of f of total degree 4. Also,

(1, 1)

(2, 1)

23y4 13x2y2

2x3

Figure 2.3: Newton polygon and weights.

in(2,1)f = 2x3 + 13x2y2. Other choices for ω ∈ R2
> give monomials, as shown on the right

in Figure 2.3, where we label the cones with the corresponding monomials. ⋄
The initial ideal in≻(I) (or in(I)) of an ideal I ⊂ K[x1, . . . , xn] is the ideal generated

by the initial terms of polynomials in I,

in≻(I) = 〈in≻(f) | f ∈ I〉 .

Note that every monomial in in≻(I) arises as in≻(f) for some f ∈ I.
We make the most important definition of this section.
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Definition 2.2.8. Let I ⊂ K[x1, . . . , xn] be an ideal and ≻ a monomial order. A set
G ⊂ I is a Gröbner basis for I with respect to the monomial order ≻ if the initial ideal
in≻(I) is generated by the initial terms of polynomials in G, that is, if

in≻(I) = 〈in≻(g) | g ∈ G〉 .

Notice that if G is a Gröbner basis and G ⊂ G′, then G′ is also a Gröbner basis. Note
also that I is a Gröbner basis for I, and every Gröbner basis contains a finite subset that
is also a Gröbner basis, by Dickson’s Lemma.

We justify our use of the term ‘basis’ in ‘Gröbner basis’.

Lemma 2.2.9. If G is a Gröbner basis for I with respect to a monomial order ≻, then
G generates I.

Proof. Let f ∈ I. Since {in(g) | g ∈ G} generates in(I), there is a polynomial g ∈ G
whose initial term in(g) divides the initial term in(f) of f . Thus there is some term axα

so that
in(f) = axαin(g) = in(axαg) ,

as ≻ respects multiplication. If we set f1 := f − cxαg, then in(f) ≻ in(f1).
We will prove the lemma by induction on in(f) for f ∈ I. Suppose first that f ∈ I is

a polynomial whose initial term in(f) is the ≻-minimal monomial in in(I). Then f1 = 0
and so f ∈ 〈G〉. Suppose now that I 6= 〈G〉, and let f ∈ I be a polynomial with in(f) is
≻-minimal among all f ∈ I r 〈G〉. But then f1 = f − cxαg ∈ I and as in(f) ≻ in(f1), we
must have that f1 ∈ 〈G〉, which implies that f ∈ 〈G〉, a contradiction.

An immediate consequence of Dickson’s Lemma and Lemma 2.2.9 is the following
Gröbner basis version of the Hilbert Basis Theorem.

Theorem 2.2.10 (Hilbert Basis Theorem). Every ideal I ⊂ K[x1, . . . , xn] has a finite
Gröbner basis with respect to any given monomial order.

Example 2.2.11. Different monomial orderings give different Gröbner bases, and the sizes
of the Gröbner bases can vary. Consider the ideal generated by the three polynomials

xy3 + xz3 + x− 1, yz3 + yx3 + y − 1, zx3 + zy3 + z − 1

In the degree reverse lexicographic order, where x ≻ y ≻ z, this has a Gröbner basis
x3z + y3z + z − 1,
xy3 + xz3 + x− 1,
x3y + yz3 + y − 1,
y4z − yz4 − y + z,
2xyz4 + xyz + xy − xz − yz,
2y3z3 − x3 + y3 + z3 + x2 − y2 − z2,
y6 − z6 − y5 + y3z2 − 2x2z3 − y2z3 + z5 + y3 − z3 − x2 − y2 + z2 + x,
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x6 − z6 − x5 − y3z2 − x2z3 − 2y2z3 + z5 + x3 − z3 − x2 − y2 + y + z,
2z7+4x2z4+4y2z4−2z6+3z4−x3−y3+3x2z+3y2z−2z3+x2+y2−2xz−2yz−z2+z−1,
2yz6 + y4 + 2yz3 + x2y − y3 + yz2 − 2z3 + y − 1,
2xz6 + x4 + 2xz3 − x3 + xy2 + xz2 − 2z3 + x− 1,

consisting of 11 polynomials with largest coefficient 4 and degree 7. If we consider instead
the lexicographic monomial order, then this ideal has a Gröbner basis

64z34 − 64z33 + 384z31 − 192z30 − 192z29 + 1008z28 + 48z27 − 816z26 + 1408z25 + 976z24

−1296z23 + 916z22 + 1964z21 − 792z20 − 36z19 + 1944z18 + 372z17 − 405z16 + 1003z15

+879z14 − 183z13 + 192z12 + 498z11 + 7z10 − 94z9 + 78z8 + 27z7 − 47z6 − 31z5 + 4z3

−3z2 − 4z − 1,

64yz21 + 288yz18 + 96yz17 + 528yz15 + 384yz14 + 48yz13 + 504yz12 + 600yz11 + 168yz10

+200yz9 + 456yz8 + 216yz7 + 120yz5 + 120yz4 − 8yz2 + 16yz + 8y − 64z33 + 128z32

−128z31 − 320z30 + 576z29 − 384z28 − 976z27 + 1120z26 − 144z25 − 2096z24 + 1152z23

+784z22 − 2772z21 + 232z20 + 1520z19 − 2248z18 − 900z17 + 1128z16 − 1073z15 − 1274z14

+229z13 − 294z12 − 966z11 − 88z10 − 81z9 − 463z8 − 69z7 + 26z6 − 141z5 − 32z4 + 24z3

−12z2 − 11z + 1

589311934509212912y2 − 11786238690184258240yz20 − 9428990952147406592yz19

−2357247738036851648yz18 − 48323578629755458784yz17 − 48323578629755458784yz16

−20036605773313239008yz15 − 81914358896780594768yz14 − 97825781128529343392yz13

−53038074105829162080yz12 − 78673143256979923752yz11 − 99888372899311588584yz10

−63645688926994994496yz9 − 37126651874080413456yz8 − 43903739120936361944yz7

−34474748168788955352yz6 − 9134334984892800136yz5 − 5893119345092129120yz4

−4125183541564490384yz3 − 1178623869018425824yz2 − 2062591770782245192yz
−1178623869018425824y + 46665645155349846336z33 − 52561386330338650688z32

+25195872352020329920z31 + 281567691623729527232z30 − 193921774307243786944z29

−22383823960598695936z28 + 817065337246009690992z27 − 163081046857587235248z26

−427705590368834030336z25+1390578168371820853808z24+390004343684846745808z23

−980322197887855981664z22+1345425117221297973876z21+1287956065939036731676z20

−953383162282498228844z19+631202347310581229856z18+1704301967869227396024z17

−155208567786555149988z16 − 16764066862257396505z15 + 1257475403277150700961z14

+526685968901367169598z13 − 164751530000556264880z12 + 491249531639275654050z11

+457126308871186882306z10 − 87008396189513562747z9 + 15803768907185828750z8

+139320681563944101273z7 − 17355919586383317961z6 − 50777365233910819054z5

−4630862847055988750z4 + 8085080238139562826z3 + 1366850803924776890z2

−3824545208919673161z − 2755936363893486164,

589311934509212912x+ 589311934509212912y − 87966378396509318592z33

+133383402531671466496z32 − 59115312141727767552z31 − 506926807648593280128z30

+522141771810172334272z29 + 48286434009450032640z28 − 1434725988338736388752z27

+629971811766869591712z26+917986002774391665264z25− 2389871198974843205136z24

−246982314831066941888z23+2038968926105271519536z22−2174896389643343086620z21

−1758138782546221156976z20+2025390185406562798552z19−774542641420363828364z18
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−2365390641451278278484z17+627824835559363304992z16+398484633232859115907z15

−1548683110130934220322z14− 500192666710091510419z13+551921427998474758510z12

−490368794345102286410z11 − 480504004841899057384z10 + 220514007454401175615z9

+38515984901980047305z8 − 136644301635686684609z7 + 17410712694132520794z6

+58724552354094225803z5 + 15702341971895307356z4 − 7440058907697789332z3

−1398341089468668912z2 + 3913205630531612397z + 2689145244006168857,

consisting of 4 polynomials with largest degree 34 and significantly larger coefficients. ⋄

Exercises

1. Prove the equivalence of conditions (i) and (ii) in Definition 2.2.1.

2. Show that the radical of a monomial ideal is a monomial ideal, and that a monomial
ideal is radical if and only if it is square-free. (Square-free means that in each of its
minimal generators no variable occurs to a power greater than 1.)

3. Show that the elements of a monomial ideal I which are minimal with respect to
division form a minimal set of generators of I in that they generate I and are a
subset of any generating set of I.

4. Let I ⊂ K[x1, . . . , xn] be a monomial ideal. Show that the set S(I) := {xα | xα 6∈ I}
of monomials not in I forms a vector space basis for K[x1, . . . , xn]/I.

5. Which of the polynomials x3z−xz3, x2yz− y2z2−x2y2, and/or x2y−x2z+ y2z lies
in the ideal

〈x2y−xz2+y2z, y2−xz+yz〉 ?

6. Using Definition 2.2.1, show that a monomial order is a linear extension of the
divisibility partial order on monomials.

7. Show that if an ideal I has a square-free initial ideal, then I is radical. Give an
example to show that the converse of this statement is false.

8. Show that each of the order relations ≻lex , ≻dlx, and ≻drl , are monomial orders.
Show that if the coordinates of ω ∈ Rn

> are linearly independent over Q, then ≻ω is
a monomial order. Show that each of ≻lex , ≻dlx, and ≻drl are weighted orders, by
giving a sequence of weights ω1, . . . , ωm ∈ Rn where ωi is used to break a tie with
ω1, . . . , ωi−1.

9. Suppose that ≻ is a term order. Prove that for any two non-zero polynomials f, g,
we have in≻(fg) = in≻(f)in≻(g).

10. Show that for a monomial order ≻, in(I)in(J) ⊆ in(IJ) for any two ideals I and J .
Find I and J such that the inclusion is proper.
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2.3 Algorithmic aspects of Gröbner bases

Many practical algorithms to study and manipulate ideals and varieties are based on
Gröbner bases. The foundations for algorithms involving Gröbner bases are the multi-
variate division algorithm and Buchberger’s algorithm to compute Gröbner bases. As in
Chapter 1, we will often write K[x] for the multivariate polynomial ring K[x1, . . . , xn].

Both steps in the algorithm for ideal membership in one variable relied on the same
elementary procedure: using a polynomial of low degree to simplify a polynomial of higher
degree. This same procedure was also used in the proof of Lemma 2.2.9. This leads to the
multivariate division algorithm, which is a cornerstone of the theory of Gröbner bases.

Algorithm 2.3.1 (Multivariate division algorithm).
Input: Polynomials g1, . . . , gm, f in K[x] and a monomial order ≻.
Output: Polynomials q1, . . . , qm and r such that

f = q1g1 + q2g2 + · · ·+ qmgm + r , (2.12)

where no term of r is divisible by an initial term of any polynomial gi and we also have
in(f) º in(r), and in(f) º in(qigi), for each i = 1, . . . ,m.

Initialize: Set r := f and q1 := 0, . . . , qm := 0. Perform the following steps.

(1) If no term of r is divisible by an initial term of some gi, then exit.

(2) Otherwise, let axα be the largest (with respect to ≻) term of r divisible by some
in(gi). Choose j minimal such that in(gj) divides xα and set bxβ := in(gj)/ax

α.
Replace r by r − bxβgj and qj by qj + bxβ, and return to step (1).

Proof of correctness. Each iteration of (2) is a reduction of r by the polynomials g1, . . . , gm.
With each reduction, the largest term in r divisible by some in(gi) decreases with respect
to ≻. Since the term order ≻ is well-founded, this algorithm must terminate after a finite
number of steps. Every time the algorithm executes step (1), condition (2.12) holds. We
also always have in(f) º in(r) because it holds initially, and with every reduction any
new terms of r are less than the term that was canceled. Lastly, in(f) º in(qigi) holds,
because in(qigi) is a term of r in some previous step of the algorithm.

Given a list G = (g1, . . . , gm) of polynomials and a polynomial f , let r be the remainder
obtained by the multivariate division algorithm applied to G and f . Since f−r lies in the
ideal generated by G, we write f mod G for this remainder r. While f mod G depends
on the monomial order ≻, in general it will also depend upon the order of the polynomials
(g1, . . . , gm). For example, in the degree lexicographic order

x2y mod (x2, xy + y2) = 0 , but

x2y mod (xy + y2, x2) = y3 .

Thus we cannot reliably use the multivariate division algorithm to test when f is in the
ideal generated by G. However, this does not occur when G is a Gröbner basis.



74 CHAPTER 2. SYMBOLIC ALGORITHMS

Lemma 2.3.2 (Ideal membership test). Let G be a finite Gröbner basis for an ideal I
with respect to a monomial order ≻. Then a polynomial f ∈ I if and only if f mod G = 0.

Proof. Set r := f mod G. If r = 0, then f ∈ I. Suppose r 6= 0. Since no term of r is
divisible any initial term of a polynomial in G, its initial term in(r) is not in the initial
ideal of I, as G is a Gröbner basis for I. But then r 6∈ I, and so f 6∈ I.

When G is a Gröbner basis for an ideal I and f ∈ K[x], no term of the remainder
f mod G lies in the initial ideal of I. A monomial xα is standard if xα 6∈ in(I). The images
of standard monomials in the ring K[x]/in(I) form a vector space basis, by Exercise 4 in
Section 2.2. Much more interesting is the following theorem.

Theorem 2.3.3. Let I ⊂ K[x] be an ideal and ≻ a monomial order. Then the images of
standard monomials in K[x]/I form a vector space basis.

Proof. Let G be a finite Gröbner basis for I with respect to ≻. Given a polynomial f ,
both f and f mod G represent the same element of K[x]/I. Since f mod G is a linear
combination of standard monomials, the standard monomials span K[x]/I.

A linear combination f of standard monomials is zero in K[x]/I only if f ∈ I. But
then in(f) is both standard and lies in in(I), and so we conclude that f = 0. Thus the
standard monomials are linearly independent in K[x]/I.

By Theorem 2.3.3, if we have a monomial order ≻ and an ideal I, then for every
polynomial f ∈ K[x], there is a unique polynomial f which involves only standard mono-
mials such that f and f have the same image in the quotient ring K[x]/I. Moreover,
f = f mod G, where G is any finite Gröbner basis of I with respect to the monomial
order ≻, and thus f may be computed from f and G using the division algorithm. This
unique representative f of f is called the normal form of f modulo I and the division
algorithm with a Gröbner basis for I is called normal form reduction.

A Gröbner basis enables computation in the quotient ring K[x]/I using the operations
of the polynomial ring and linear algebra, by Theorem 2.3.3. Indeed, let G be a finite
Gröbner basis for an ideal I with respect to a monomial order ≻ and suppose that f, g ∈
K[x]/I are in normal form, as a linear combination of standard monomials. Then f + g is
a linear combination of standard monomials and we can compute the product fg in the
quotient ring as fg mod G, where this product is taken in the polynomial ring.

Theorem 2.2.10, which asserted the existence of a finite Gröbner basis, was purely
existential. To use Gröbner bases, we need methods to detect and generate them. Such
methods were given by Bruno Buchberger in his 1965 Ph.D. thesis.

A given set G of generators for an ideal will fail to be a Gröbner basis if the initial
terms of the generators fail to generate the initial ideal. That is, if there are polynomials
in the ideal whose initial terms are not divisible by the initial terms of our generators. A
necessary step towards a Gröbner basis is some method to generate polynomials in the
ideal with ‘new’ initial terms. This is the raison d’etre for the following definition.
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Definition 2.3.4. The least common multiple, lcm{axα, bxβ} of two terms axα and bxβ is
the minimal monomial xγ divisible by both xα and xβ. In that case, the exponent vector
γ is the componentwise maximum of α and β.

Let 0 6= f, g ∈ K[x] and suppose ≻ is a monomial order. The S-polynomial of f and
g, Spol(f, g), is the polynomial linear combination of f and g,

Spol(f, g) :=
lcm{in(f), in(g)}

in(f)
f − lcm{in(f), in(g)}

in(g)
g .

Note that both terms in this expression have initial term equal to lcm{in(f), in(g)}. ⋄

Buchberger gave the following simple criterion to detect when a set G of polynomials
is a Gröbner basis for the ideal 〈G〉 it generates.

Theorem 2.3.5 (Buchberger’s Criterion). A set G of polynomials is a Gröbner basis for
the ideal 〈G〉 with respect to a monomial order ≻ if and only if for for all pairs f, g ∈ G,

Spol(f, g) mod G = 0 .

Proof. Re-read proof First, observe that Buchberger’s criterion is necessary. Suppose that
G is a Gröbner basis for an ideal I with respect to≻. Then for f, g ∈ G, their S-polynomial
Spol(f, g) lies in I and the ideal membership test implies that Spol(f, g) mod G = 0.

For sufficiency, suppose that G = {g1, . . . , gm} satisfies Buchberger’s criterion and let
I be the ideal generated by G. Let f ∈ I. We will show that in(f) is divisible by in(g),
for some g ∈ G. This implies that G is a Gröbner basis for I.

Given a list h = (h1, . . . , hm) of polynomials in K[x1, . . . , xn] let mm(h) be the largest
monomial appearing in one of h1g1, . . . , hmgm. This will be the monomial in at least one
of the initial terms in(h1g1), . . . , in(hmgm). Let j(h) be the minimum index i for which
mm(h) is the monomial of in(higi).

Consider lists h = (h1, . . . , hm) of polynomials with

f = h1g1 + · · ·+ hmgm (2.13)

for which mm(h) minimal among all lists satisfying (2.13). Of these, let h be a list with
j := j(h) maximal. We claim that mm(h) is the monomial of in(f), which implies that
in(gj) divides in(f), and completes the proof.

Otherwise, mm(h) ≻ in(f), and the initial term in(hjgj) is canceled in the sum (2.13).
Thus there is some index k such that mm(h) is a monomial in hkgk. By the minimality of
mm(h), mm(h) is the monomial of in(hkgk) and by our assumption on j, we have j < k.
Let xβ := lcm{in(gj), in(gk)}, the monomial which is canceled in Spol(gj, gk). Since in(gj)
and in(gk) both divide mm(h), both divide in(hjgj), and there is some term axα such that
axαxβ = in(hjgj) = in(hj) · in(gj). Set cxγ := in(hjgj)/in(gk). Then

axαSpol(gj, gk) = axα xβ

in(gj)
gj − axα xβ

in(gk)
gk = in(hj)gj − cxγgk .
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Observe that in(in(hj)gj) = in(cxγgk), so that in(axαSpol(gj, gk)) < mm(h). By Buch-
berger’s criterion for G, there are polynomials q1, . . . , qm with

Spol(gj, gk) = q1g1 + · · ·+ qmgm ,

and we may assume that in(qigi) ¹ in(Spol(gj, gk)) ≺ xβ, by the Division Algorithm and
the construction of Spol(gj, gk).

Define a new list h′ = (h′
1, . . . , h

′
m) of polynomials where

h′
i :=





hi + axαqi i 6= j, k
hj + axαqj − in(hj) i = j
hk + axαqk + cxγ i = k

.

Consider the sum
∑

h′
igi, which is

∑

i

higi +
(
axα

∑

i

qigi

)
− in(hj)gj + cxγgk

= f + axαSpol(gj, gk)− axαSpol(gj, gk) = f ,

so h′ is a list satisfying (2.13).
We have in(qigi) ¹ in(Spol(gj, gk)), so in(axαqigi) ≺ xαxβ = mm(h). But then

mm(h′) ¹ mm(h). By the minimality of mm(h), we have mm(h′) = mm(h). Since
in(h′

jgj) = in((hj + axαqj − in(hj))gj) ≺ in(hjgj), we have j(h) = j < j(h′), which
contradicts our choice of h.

Buchberger’s algorithm to compute a Gröbner basis begins with a list of polynomials
and augments that list by adding reductions of S-polynomials. It halts when the list of
polynomials satisfies Buchberger’s Criterion.

Algorithm 2.3.6 (Buchberger’s Algorithm). Let G = (g1, . . . , gm) be generators for an
ideal I and ≻ a monomial order. For each 1 ≤ i < j ≤ m, let hij := Spol(gi, gj) mod G. If
each reduction vanishes, so that Spol(gi, gj) mod G = 0 for each 1 ≤ i < j ≤ m, then by
Buchberger’s Criterion, G is a Gröbner basis for I with respect to ≻. Otherwise append
all the non-zero hij to the list G and repeat this process.

Write a short proof for this algorithm.

This algorithm terminates after finitely many steps, because the initial terms of polyno-
mials in G after each step generate a strictly larger monomial ideal and Dickson’s Lemma
implies that any increasing chain of monomial ideals is finite. Since the manipulations
in Buchberger’s algorithm involve only algebraic operations using the coefficients of the
input polynomials, we deduce the following corollary, which is important when studying
real varieties. Let k be any subfield of K.

Corollary 2.3.7. Let f1, . . . , fm ∈ k[x1, . . . , xn] be polynomials and ≻ a monomial order.
Then there is a Gröbner basis G ⊂ k[x1, . . . , xn] for the ideal 〈f1, . . . , fm〉 in K[x1, . . . , xn]
with respect to the monomial order ≻.
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Example 2.3.8. Consider applying the Buchberger algorithm to G = (x2, xy + y2) with
any monomial order where x ≻ y. First

Spol(x2, xy + y2) = y · x2 − x(xy + y2) = −xy2 .

Then
−xy2 mod (x2, xy + y2) = −xy2 + y(xy + y2) = y3 .

Since all S-polynomials of (x2, xy + y2, y3) reduce to zero, this is a Gröbner basis. ⋄

Among the polynomials hij computed at each stage of Buchberger’s algorithm are those
where one of in(gi) or in(gj) divides the other. Suppose that in(gi) divides in(gj) with
i 6= j. Then Spol(gi, gj) = gj − axαgi, where axα is some term. This has strictly smaller
initial term than does gj and so we never use gj to compute hij := Spol(gi, gj) mod G. It
follows that gj − hij lies in the ideal generated by G r {gj} (and vice-versa), and so we
may replace gj by hij in G without changing the ideal generated by G, and only possibly
increasing the ideal generated by the initial terms of polynomials in G.

This gives the following elementary improvement to Buchberger’s algorithm:

In each step, initially compute hij for those i 6= j
where in(gi) divides in(gj), and replace gj by hij.

(2.14)

In some cases this computes the Gröbner basis. Another improvement, identifying S-
polynomials that reduce to zero and therefore need not be computed, is given in Exercise 3.

A Gröbner basis G is reduced if the initial terms of polynomials in G have coefficient 1
and if for each g ∈ G, no monomial of g is divisible by an initial term of another element
of G. A reduced Gröbner basis for an ideal is uniquely determined by the monomial
order. Reduced Gröbner bases are the multivariate analog of unique monic polynomial
generators of ideals of K[x]. Elements g of a reduced Gröbner basis have the form,

xα −
∑

β∈B

aβx
β , (2.15)

where xα = in(g) is the initial term and B consists of exponent vectors of standard mono-
mials. This rewrites the nonstandard initial monomial in terms of standard monomials.
In this way, a Gröbner basis is a system of rewriting rules for polynomials. A reduced
Gröbner basis has one generator for every generator of the initial ideal.

Example 2.3.9. Let M be a m × n matrix which is the matrix of coefficients of m
linear forms g1, . . . , gm in K[x1, . . . , xn], and suppose that x1 ≻ x2 ≻ · · · ≻ xn. We can
apply (2.14) to two forms gi and gj when their initial terms have the same variable. Then
the S-polynomial and subsequent reductions are equivalent to the steps in the algorithm
of Gaussian elimination applied to the matrix M . If we iterate our applications of (2.14)
until the initial terms of the forms gi have distinct variables, then the forms g1, . . . , gm
are a Gröbner basis for the ideal they generate.
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If the forms gi are a reduced Gröbner basis and are sorted in decreasing order according
to their initial terms, then the resulting matrix M of their coefficients is an echelon matrix:
The initial non-zero entry in each row is 1, it is the only non-zero entry in its column,
and these columns increase with row number.

Gaussian elimination produces the same echelon matrix from M . Thus the Buchberger
algorithm is a generalization of Gaussian elimination to non-linear polynomials. ⋄

The form (2.15) of elements in a reduced Gröbner basis G for an ideal I with respect
to a given monomial order ≻ implies that G depends on the monomial ideal in≻(I), and
thus only indirectly on ≻. That is, if ≻′ is a second monomial order with in≻′(I) = in≻(I),
then G is also a Gröbner basis for I with respect to ≻′. While there are uncountably many
monomial orders, any given ideal has only finitely many initial ideals.

Theorem 2.3.10. The set In(I) of initial ideals of an ideal I ⊂ K[x] is finite.

Proof. For each initial ideal M of I, choose a monomial order ≻M with M = in≻M
(I).

Let
T := {≻M | M ∈ In(I)}

be this set of monomial orders, one for each initial ideal of I.
Suppose that In(I) is infinite. Then T is infinite. Let g1, . . . , gm ∈ K[x] be generators

for I. Since each polynomial gi has only finitely many terms, there is an infinite subset
T1 of T with the property that any two monomial orders ≻,≻′ in T1 will select the same
initial terms from each of the gi,

in≻(gi) = in≻′(gi) for i = 1, . . . ,m .

SetM1 := 〈in≻(g1), . . . , in≻(gm)〉, where≻ is any monomial order in T1. Either (g1, . . . , gm)
is a Gröbner basis for I with respect to ≻ or else there is a some polynomial gm+1 in I
whose initial term does not lie in M1. Replacing gm+1 by gm+1 mod (g1, . . . , gm), we may
assume that gm+1 has no term in M1.

Then there is an infinite subset T2 of T1 such that any two monomial orders ≻,≻′ in T2

will select the same initial term of gm+1, in≻(gm+1) = in≻′(gm+1). Let M2 be the monomial
ideal generated by M1 and in≻(gm+1) for any monomial order ≻ in T2. As before, either
(g1, . . . , gm, gm+1) is a Gröbner basis for I with respect to ≻, or else there is an element
gm+2 of I having no term in M2.

Continuing in this fashion constructs an increasing chain M1 ( M2 ( · · · of monomial
ideals in K[x]. By Dickson’s Lemma, this process must terminate, at which point we will
have an infinite subset Tr of T and polynomials g1, . . . , gm+r that form a Gröbner basis
for I with respect to a monomial order ≻ in Tr, and these have the property that for any
other monomial order ≻′ in Tr, we have

in≻(gi) = in≻′(gi) for i = 1, . . . ,m+r .

But this implies that in≻(I) = in≻′(I) is an initial ideal for two distinct monomial orders
in Tr ⊂ T , which contradicts the construction of the set T .
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Definition 2.3.11. A consequence of Theorem 2.3.10 that an ideal I has only finitely
many initial ideals is that an ideal I has only finitely many reduced Gröbner bases. The
union of this finite set of reduced Gröbner bases is a finite generating set for I that is a
Gröbner basis for I with respect to any monomial order. Such a generating set is called
a universal Gröbner basis for the ideal I.

Exercises

1. Describe how Buchberger’s algorithm behaves when it computes a Gröbner basis
from a list of monomials. What if we use the elementary improvement (2.14)?

2. Use Buchberger’s algorithm to compute by hand the reduced Gröbner basis of 〈y2−
xz+yz, x2y−xz2+y2z〉 in the degree reverse lexicographic order where x ≻ y ≻ z.

3. Let f, g ∈ K[x] be polynomials with relatively prime initial terms, and suppose that
their initial coefficients are 1.

(a) Show that
Spol(f, g) = −(g − in(g))f + (f − in(f))g .

Deduce that the initial monomial of Spol(f, g) is a multiple of either the initial
monomial of f or the initial monomial of g.

(b) Analyze the steps of the reduction computing Spol(f, g) mod (f, g) using the
division algorithm to show that this is zero.

This gives another improvement to Buchberger’s algorithm: avoid computing and
reducing those S-polynomials of polynomials with relatively prime initial terms.

4. Let U be a universal Gröbner basis for an ideal I in K[x1, . . . , xn]. Show that
for every subset Y ⊂ {x1, . . . , xn} the elimination ideal I ∩ K[Y ] is generated by
U ∩K[Y ].

5. Let ≻ be any monomial order and G be a list of homogeneous polynomials. Then
for any homogeneous polynomial f , its reduction modulo G is also homogeneous.

Show that the reduced Gröbner basis computed by Buchberger’s algorithm from G
consists of homogeneous polynomials. Deduce that the reduced Gröbner basis of a
homogeneous ideal consists of homogeneous polynomials.

6. Let I be a ideal generated by homogeneous linear polynomials. A non-zero linear
form f in I is a circuit of I if f has minimal support (with respect to inclusion)
among all polynomials in I. Prove that the set of all circuits of I is a universal
Gröbner basis of I.

7. Let I := 〈x2 + y2, x3 + y3〉 ⊂ Q[x, y] and suppose that the monomial order ≻ is the
lexicographic order with x ≻ y.
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(a) Show that y4 ∈ I.

(b) Show that the reduced Gröbner basis for I is {y4, xy2 − y3, x2 + y2}.
(c) Show that {x2+ y2, x3+ y3} cannot be a Gröbner basis for I for any monomial

ordering.

8. (a) Prove that the ideal 〈x, y〉 ⊂ Q[x, y] is not a principal ideal.

(b) Is 〈x2 + y, x+ y〉 already a Gröbner basis with respect to some term ordering?

(c) Use Buchberger’s algorithm to compute by hand Gröbner bases of the ideal
I = 〈y − z2, z − x3〉 ∈ Q[x, y, z] with respect to the lexicographic and to the
degree reverse lexicographic monomial orders.

9. Let I ⊂ K[x1, . . . , xn] be an ideal, and fix f ∈ K[x1, . . . , xn]. Then the saturation of
I with respect to f is the set

(I : f∞) = {g ∈ K[x1, . . . , xn] | fmg ∈ I for some m > 0} .

(a) Prove that (I : f∞) is an ideal.

(b) Prove that we have an ascending chain of ideals

(I : f) ⊂ (I : f 2) ⊂ (I : f 3) ⊂ · · ·

(c) Prove that there exists a nonnegative integer N such that (I : f∞) = (I : fN).

(d) Prove that (I : f∞) = (I : fm) if and only if (I : fm) = (I : fm+1).

When I is homogeneous and f = xn the following strategy computes the saturation.
Fix the degree reverse lexicographic order ≻ where x1 ≻ x2 ≻ · · · ≻ xn and let G
be a reduced Gröbner basis of a homogeneous ideal I ⊂ K[x1, . . . , xn].

(e) Show that the set

{f ∈ G | xn does not divide f} ∪ {f/xn | f ∈ G and xn divides f}

is a Gröbner basis of (I : xn).

(f) Show that a Gröbner basis of (I : x∞
n ) is obtained by dividing each element

f ∈ G by the highest power of xn that divides f .

2.4 Solving equations with Gröbner bases

Algorithm 2.1.14 reduced the problem of solving two equations in two variables to that
of solving univariate polynomials, using resultants to eliminate a variable. For an ideal
I ⊂ K[x] whose variety V(I) consists of finitely many points, this same idea of back solving
leads to an algorithm to compute V(I), provided we can compute the elimination ideals
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I ∩K[xi]. Gröbner bases provide a universal algorithm for computing elimination ideals.
More generally, ideas from the theory of Gröbner bases can help to understand solutions
to systems of equations.

Suppose that we have N polynomial equations in n variables (x1, . . . , xn)

f1(x1, . . . , xn) = · · · = fN(x1, . . . , xn) = 0 , (2.16)

and we want to understand the solutions to this system. By understand, we mean an-
swering (any of) the following questions.

(i) Does (2.16) have finitely many solutions?

(ii) Can we count them, or give (good) upper bounds on their number?

(iii) Can we solve the system (2.16) and find all solutions?

(iv) When the polynomials have real coefficients, can we count (or bound) the number
of real solutions to (2.16)? Or simply find them?

The solutions to (2.16) in Kn constitute the affine variety V(I), where I is the ideal
generated by the polynomials f1, . . . , fN . Algorithms based on Gröbner bases to address
Questions (i)-(iv) involve studying I. An ideal I is zero-dimensional if, over the algebraic
closure K of K, V(I) is finite. Thus I is zero-dimensional if and only if its radical

√
I is

zero-dimensional.

Theorem 2.4.1. An ideal I ⊂ K[x] is zero-dimensional if and only if K[x]/I is a finite-
dimensional K-vector space.

When an ideal I is zero-dimensional, we will call the points of V(I) the roots of I.

Proof. We may assume the K is algebraically closed, as this does not change the dimension
of quotient rings.

We prove this first in the case that I is radical. Then I = I(V(I)), by the Nullstel-
lensatz. Then K[x]/I is the coordinate ring K[X] of X := V(I), consisting consists of
all functions obtained by restricting polynomials to V(I), and is therefore a subring of
the ring of functions on X. If X is finite, then K[X] is finite-dimensional as the space of
functions on X has dimension equal to the number of points in X. Conversely, suppose
that X is infinite. Then there is some coordinate, say x1, such that the projection of X
to the x1-axis is infinite. In particular, no polynomial in x1, except the zero polynomial,
vanishes on X. Restriction of polynomials in x1 to X is therefore an injective map from
K[x1] →֒ K[X] which shows that K[X] is infinite-dimensional.

We complete the proof by showing that K[x1, . . . , xn]/I is finite-dimensional if and
only if K[x1, . . . , xn]/

√
I is finite-dimensional. Now let I be any ideal. If K[x]/I is finite-

dimensional, then so is K[x]/
√
I as I ⊂

√
I. For the other direction, suppose that K[x]/

√
I

is finite-dimensional. For each variable xi, there is some linear combination of 1, xi, x
2
i , . . .
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which is zero in K[x]/
√
I and hence lies in

√
I. But this is a univariate polynomial

gi(xi) ∈
√
I, so there is some power gi(xi)

Mi of gi which lies in I. But then we have
〈g1(x1)

M1 , . . . , gn(xn)
Mn〉 ⊂ I, and so the map

K[x]/〈g1(x1)
M1 , . . . , gn(xn)

Mn〉 −→ K[x]/I

is a surjection. But K[x]/〈g1(x1)
M1 , . . . , gn(xn)

Mn〉 has dimension
∏

i Mi deg(gi), which
implies that K[x]/I is finite-dimensional.

A consequence of this proof is the following criterion for an ideal to be zero-dimensional.

Corollary 2.4.2. An ideal I ⊂ K[x] is zero-dimensional if and only if for every variable
xi, there is a univariate polynomial gi(xi) which lies in I.

Together with Theorem 2.3.3, Theorem 2.4.1 leads to a Gröbner basis criterion/algorithm
to solve Question (i).

Corollary 2.4.3. An ideal I ⊂ K[x] is zero-dimensional if and only if for any monomial
order ≻, the initial ideal in≻I of I contains some power of every variable.

Thus we can determine if I is zero-dimensional and thereby answer Question (i) by
computing a Gröbner basis for I and checking that the initial terms of elements of the
Gröbner basis include pure powers of all variables.

When I is zero-dimensional, its degree is the dimension of K[x]/I as a K-vector space,
which is the number of standard monomials, by Theorem 2.3.3. A Gröbner basis for I
gives generators of the initial ideal which we can use to count the number of standard
monomials to determine its degree.

When I is a zero-dimensional radical ideal and K is algebraically closed, the degree of
I equals the number of points in V(I) ⊂ Kn (see Exercise 5 from Section 1.3). and thus
we obtain an answer to Question (ii).

Theorem 2.4.4. Let I be the ideal generated by the polynomials fi of (2.16). If I is zero-
dimensional, then the number of solutions to the system (2.16) is bounded by the degree
of I. When K is algebraically closed, the number of solutions is equal to this degree if and
only if I is radical.

In many important cases, there are sharp upper bounds for the number of isolated
solutions to the system (2.16) which do not require a Gröbner basis. For example, Theo-
rem 2.1.17 (Bézout’s Theorem in the plane) gives such bounds when N = n = 2. Suppose
that N = n so that the number of equations equals the number of variables. This is called
a square system. Bézout’s Theorem in the plane has a natural extension in this case,
which we will prove in Section 3.5. A common solution a to a square system of equations
is nondegenerate if the differentials of the equations are linearly independent at a.
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Theorem 2.4.5 (Bézout’s Theorem). Given polynomials f1, . . . , fn ∈ K[x1, . . . , xn] with
di = deg(fi), the number of nondegenerate solutions to the system

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

in Kn is at most d1 · · · dn. When K is algebraically closed, this is a bound for the number
of isolated solutions, and it is attained for generic choices of the polynomials fi.

This product of degrees d1 · · · dn is the Bézout bound for such a system. While sharp for
generic square systems, few practical problems involve generic systems and other bounds
are often needed (see Exercise 4). We study such bounds in Chapter 8, where we establish
the polyhedral bounds of Kushnirenko’s and Bernsteins’s Theorems.

We discuss a symbolic method to solve systems of polynomial equations (2.16) based
upon elimination theory and the Shape Lemma, which describes an optimal form of a
Gröbner basis of a zero-dimensional ideal I with respect to a lexicographic monomial
order. Let I ⊂ K[x] be an ideal. A univariate polynomial g(xi) is an eliminant for I if g
generates the elimination ideal I ∩K[xi].

Theorem 2.4.6. Suppose that g(xi) is an eliminant for an ideal I ⊂ K[x]. Then g(ai) = 0
for every a = (a1, . . . , an) ∈ V(I) ∈ Kn. When K is algebraically closed, every root of g is
the ith coordinate of a point of V(I).

Proof. First, g(ai) = 0 as this is the value of g at the point a. Suppose that K is
algebraically closed and that ξ is a root of g(xi) but there is no point a ∈ V(I) whose ith
coordinate is ξ. Let h(xi) be a polynomial whose roots are the other roots of g. Then
h vanishes on V(I) and so h ∈

√
I. But then some power, hN , of h lies in I. Thus

hN ∈ I ∩K[xi] = 〈g〉. But this is a contradiction as h(ξ) 6= 0 while g(ξ) = 0.

Theorem 2.4.7. If g(xi) is a monic eliminant for an ideal I ⊂ K[x], then g lies in the
reduced Gröbner basis for I with respect to any monomial order in which the pure powers
xm
i of xi precede variables xj with j 6= i.

Proof. Suppose that ≻ is such a monomial order. Then its minimal monomials are
1, xi, x

2
i , . . . . Since g generates the elimination ideal I ∩ K[xi], it is the lowest degree

monic polynomial in xi lying in I. As g ∈ I, we have that x
deg(g)
i ∈ in≺(I). Let x

m
i be the

generator of in≺(I) ∩ K[xi]. Then m ≤ deg(g). Let f be the polynomial in the reduced
Gröbner basis of I with respect to ≺ whose initial term is xm

i . Then its remaining terms
involve smaller standard monomials and are thus pure powers of xi. We conclude that
f ∈ I ∩ K[xi] = 〈g〉, and so g divides f , so m = deg(g). As f−g is a polynomial in xi

which lies in I but has degree less than deg(g), the minimality of f and g implies that
f−g = 0. This proves that g lies in the reduced Gröbner basis.

The following theorem relating Gröbner bases and elimination ideals is proven in the
exercises.
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Theorem 2.4.8. Let I ⊂ K[x] be an ideal and let ≺ be the lexicographic monomial order
with x1 ≺ x2 ≺ · · · ≺ xn and suppose that G is a Gröbner basis for I with respect to
≺. Then, for each m = 1, . . . , n, the polynomials in G that lie in K[x1, . . . , xm] form a
Gröbner basis for the elimination ideal Im = I ∩K[x1, . . . , xm].

These theorems give an algorithm to compute eliminants—simply compute a lexico-
graphic Gröbner basis. This is not recommended, as lexicographic Gröbner bases appear
to be the most expensive to compute. As we saw in Example 2.2.11, their size can be
significantly larger than other Gröbner bases. It is even expensive to compute a univariate
eliminant g(xi) using an elimination order, (a monomial order ≺ where any pure power xd

i

of xi precedes any monomial involving any other variable xj for j 6= i as in Theorem 2.4.7).
We instead offer the following algorithm.

Algorithm 2.4.9.

Input: A zero-dimensional ideal I ⊂ K[x1, . . . , xn] and a variable xi.
Output: A univariate eliminant g(xi) ∈ I.

(1) Compute a Gröbner basis G for I with respect to any monomial order.

(2) Compute the sequence 1 mod G, xi mod G, x2
i mod G, . . . , until a linear depen-

dence is found,
m∑

j=0

aj(x
j
i mod G) = 0 , (2.17)

where m is minimal. Then

g(xi) =
m∑

j=0

ajx
j
i

is a univariate eliminant.

Proof of correctness. Since I is zero-dimensional, by Corollary 2.4.2 it has an eliminant
g(xi) ∈ I. If g =

∑N

i=0 bjx
j
i then by the ideal membership test (Lemma 2.3.2),

0 = g mod G =
( N∑

j=0

bjx
j
i

)
mod G =

N∑

j=0

bj(x
j
i mod G) ,

which is a linear dependence among the elements of the sequence 1 mod G, xi mod G,
x2
i mod G, . . . . Thus the algorithm halts during Step (2). The minimality of the degree

of g implies that N = m and the uniqueness of such minimal linear combinations implies
that the coefficients bj and aj are proportional, which shows that the algorithm computes
a scalar multiple of g, which is also an eliminant.

Elimination using Gröbner bases gives algorithms for Questions (iii) and (iv). The first
step is to understand the optimal form of a Gröbner basis of a zero-dimensional ideal.
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Lemma 2.4.10 (Shape Lemma). Suppose g = g(xi) is an eliminant of a zero-dimensional
ideal I with deg(g) = deg(I). Then I is radical if and only if g has no multiple factors.

Suppose that i = 1 so that g = g(x1). Then in the lexicographic monomial order with
x1 ≺ x2 ≺ · · · ≺ xn, the ideal I has a Gröbner basis of the form:

g(x1) , x2 − g2(x1) , . . . , xn − gn(x1) , (2.18)

where deg(g) > deg(gi) for i = 2, . . . , n.
If I is generated by polynomials with coefficients in a subfield k, then the number of

points of V(I) in kn equals the number of roots of g in k.

This is a simplified version of the Shape Lemma, which describes the form of a reduced
Gröbner basis for any zero-dimensional ideal in the lexicographic order. Example 2.2.11
gives a zero-dimensional ideal which does not satisfy the hypotheses of Lemma 2.4.10.

Proof. Replacing K by its algebraic closure does not affect these algebraic statements, as
the polynomials g and gi have coefficients in k, by Corollary 2.3.7. Suppose that g = g(xi)
is an eliminant. We have

#roots of g ≤ #V(I) ≤ deg(I) = deg(g) ,

the first inequality is by Theorem 2.4.6 and the second by Theorem 2.4.4. If the roots of
g are distinct, then their number is deg(g) and so these inequalities are equalities. This
implies that I is radical, by Theorem 2.4.4. Conversely, if g has multiple roots, then there
is a polynomial h with the same roots as g but with smaller degree. (We may select h to
be the square-free part of g.) Since 〈g〉 = I ∩K[xi], we have that h 6∈ I, but since hdeg(g)

is divisible by g, hdeg(g) ∈ I, so I is not radical.
To prove the second statement, let d be the degree of the eliminant g(x1). Then

1, x1, . . . , x
d−1
1 are standard monomials, and since deg(g) = deg(I), there are no oth-

ers. Thus the lexicographic initial ideal is 〈xd
1, x2, . . . , xn〉. Each element of the reduced

Gröbner basis for I expresses a generator of the initial ideal as a K-linear combination of
standard monomials. It follows that the reduced Gröbner basis has the form claimed.

For the last statement, observe that the common zeroes of the polynomials (2.18) are

{(a1, . . . , an) | g(a1) = 0 and ai = gi(a1) , i = 2, . . . , n} .

By Corollary 2.3.7, the polynomials g, g2, . . . , gn all have coefficients from k, and so a
component ai lies in k if the root a1 of g(x1) lies in k.

Not all ideals I have an eliminant g with deg(g) = deg(I). For example, let m0 := 〈x, y〉
be the maximal ideal corresponding to the origin {(0, 0)} ∈ K2. Then its square m

2
0 =

〈x2, xy, y2〉 has degree three (there are three standarad monomials), but any eliminant
has degree two.

Failure of the condition deg(g) = deg(I) in the Shape Lemma may occur even when
I is radical. Indeed, when I is radical, deg(g(xi)) = deg(I) if and only if the projection
map πi to the coordinate xi-axis is one-to-one.
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Figure 2.4: The seven points of V(f, g, h) and their projections.

Example 2.4.11. Suppose that the ideal I is generated by the three polynomials,

f := 1574y2 − 625yx− 1234y + 334x4 − 4317x3 + 19471x2

− 34708x+ 19764 + 45x2y − 244y3 ,

g := 45x2y − 305yx− 2034y − 244y3 − 95x2 + 655x+ 264 + 1414y2 , and

h := −33x2y + 197yx+ 2274y + 38x4 − 497x3 + 2361x2 − 4754x

+ 1956 + 244y3 − 1414y2 .

Then V(I) is the seven nondegenerate points of Figure 2.4. There are only five points in
the projection to the x-axis and four in the projection to the y-axis. The corresponding
eliminants have degrees five and four,

2x5 − 29x4 + 157x3 − 391x2 + 441x− 180 2y4 − 13y3 + 28y2 − 23y + 6 ⋄

Nevertheless, when I is radical, deg(g) = deg(I) will hold after a generic change of
coordinates, as we saw in Example 2.4.11 and as was used in the proof of Bézout’s Theorem
in the plane (Theorem 2.1.17). In this case, back solving may be used to find all roots of I
over an algebraically closed field, solving Question (iii). It also gives a symbolic algorithm
to count the number of real solutions to a system of equations whose ideal satisfies the
hypotheses of the Shape Lemma and solves Question (iv).

Algorithm 2.4.12 (Counting real roots).
Input: An ideal I ⊂ R[x1, . . . , xn].
Output: The number of real points in V(I), if I satisfies the hypotheses of the Shape
Lemma, or else “I does not satisfy the hypotheses of the Shape Lemma”.

Compute dim(I) and deg(I). If I does not have dimension 0, then exit with “I is not
zero-dimensional”, else set i := 1.

1. Compute an eliminant g(xi) for I. If deg(g) = deg(I) and gcd(g, g′) = 1, then
output the number of real roots of g. Else if i < n, set i := i+ 1 and return to (1).
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2. If no eliminant has been computed and i = n, then output “I does not satisfy the
hypotheses of the Shape Lemma”.

While this algorithm will not successfully compute the number of real points in V(I)
(it would fail for the ideal of Figure 2.4), it may be combined with more sophisticated
methods to accomplish that task.

The Shape Lemma describes an optimal form of a Gröbner basis for a zero-dimensional
ideal, we remarked that it is typically not optimal to compute a lexicographic Gröbner
basis directly, and offered Algorithm 2.4.9 to compute eliminants. The idea behind Al-
gorithm 2.4.9 extends to the FGLM algorithm for Gröbner basis conversion. This takes
a Gröbner basis for a zero-dimensional ideal with respect to one monomial order ⊲ and
computes a Gröbner basis with respect to a different monomial order ≻.

Algorithm 2.4.13 (FGLM).
Input: A Gröbner basis G for a zero-dimensional ideal I ⊂ K[x1, . . . , xn] with respect to
a monomial order ⊲, and a different monomial order ≻.
Output: A Gröbner basis H for I with respect to ≻.
Initialize: Set H := {}, xα := 1, and S := {}.

(1) Compute xα := xα mod G.

(2) If xα does not lie in the linear span of S, then set S := S ∪ {xα}.
Otherwise, there is a (unique) linear combination of elements of S such that

xα =
∑

xβ∈S

cβxβ .

Set H := H ∪ {xα −
∑

β cβx
β}.

(3) If {xγ | xγ ≻ xα} ⊂ in≻H := 〈in≻h | h ∈ H〉, then halt and output H. Otherwise,
set xα to be the ≻-minimal monomial in {xγ 6∈ in≻H | xγ ≻ xα} and return to (1).

Proof of correctness. By construction, H always consists of elements of I, and elements
of S are linearly independent in the quotient ring K[x]/I. Thus in≻H is a subset of the
initial ideal in≻I, and we always have the inequalities

|S| ≤ dimK(K[x]/I) and in≻H ⊂ in≻I .

Every time we return to (1) either the set S or the set H (and also in≻H) increases. Since
the cardinality of S is bounded by deg(I) and the monomial ideals in≻H form a strictly
increasing chain, the algorithm must halt.

When the algorithm halts, every monomial is either in the set SM := {xβ | xβ ∈ S} or
else in the monomial ideal in≻H. By our choice of xα in (3), these two sets are disjoint,
so that SM is the set of standard monomials for in≻H. Since

in≻H ⊂ in≻〈H〉 ⊂ in≻I ,
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and elements of S are linearly independent in K[x]/I, we have

|S| ≤ dimK(K[x]/I) = dimK(K[x]/in≻I) ≤ dimK(K[x]/in≻H) = |S| .

Thus in≻I = in≻H, which proves that H is a Gröbner basis for I with respect to the
monomial order ≻. By the form of the elements of H, it is the reduced Gröbner basis.

Exercises

1. The trigonometric curves parameterized by (cos(θ)− 1
2
cos(2θ), sin(θ)+ 1

2
sin(2θ)/2),

(cos(θ)− 2
3
cos(2θ), sin(θ) + 2

3
sin(2θ)), and the polar curve r = 1+ 3 cos(3θ) are the

cuspidal and trinodal plane quartics, and the rose with three petals, respectively.

Use elimination to find their implicit equations: Write each as the projection to
the (x, y)-plane of an algebraic variety in K4. Hint: These are images of the circle
c2 + s2 = 1 under maps to the (x, y) plane, where the variables (c, s) correspond to
(cos(θ), sin(θ)). The graph of the first is given by the three polynomials

c2 + s2 − 1 , x− (c− 1
2
(c2 − s2)) , y − (s+ sc) ,

using the identities cos(2θ) = cos2(θ)− sin2(θ) and sin(2θ) = 2 sin(θ) cos(θ).

2. The Whitney umbrella is the image in K3 of the map (u, v) 7→ (uv, u, v2). Use
elimination to find an implicit equation for the Whitney umbrella. Change this to
the example from CLO

Which points in K2 give the handle of the Whitney umbrella?

3. Show that every eliminant of m2
0 = 〈x2, xy, y2〉 has has degree two, even after a

change of coordinates.



2.4. SOLVING EQUATIONS WITH GRÖBNER BASES 89

4. Compute the number of solutions to the system of polynomials

1 + 2x+ 3y + 5xy = 7 + 11xy + 13xy2 + 17x2y = 0 .

Show that each is nondegenerate and compare this to the Bézout bound for this
system. How many solutions are real?

5. In this and subsequent exercises, you are asked to use computer experimentation to
study the number of solutions to certain structured polynomial systems. This is a
good opportunity to become acquainted with symbolic software.

For several small values of n and d, generate n random polynomials in n variables of
degree d, and compute their numbers of isolated solutions. Does your answer agree
with Bézout’s Theorem?

6. A polynomial is multilinear if all exponents are 0 or 1. For example,

3xyz − 17xy + 29xz − 37yz + 43x− 53y + 61z − 71

is a multilinear polynomial in the variables x, y, z. For several small values of n
generate n random multilinear polynomials and compute their numbers of common
zeroes, Does your answer agree with Bézout’s Theorem?

7. Let A ⊂ Nn be a finite set of integer vectors, which we regard as exponents of
monomials in K[x1, . . . , xn]. A polynomial with support A is a linear combination
of monomials whose exponents are from A. For example

1 + 3x+ 9x2 + 27y + 81xy + 243xy2

is a polynomial whose support is the column vectors of A = ( 0 1 2 0 1 1
0 0 0 1 1 2 ).

For n = 2, 3 and many A with |A| > n and 0 ∈ A, generate random systems of
polynomials with support A and determine their numbers of isolated solutions. Try
to formulate a conjecture about this number of solutions as a function of A.

8. Fix m, p ≥ 2. For α : 1 ≤ α1 < · · · < αp ≤ m+p, let Eα be a p × (m+p) matrix
whose entries in the columns indexed by α form the identity matrix, and the entries
in position i, j are either variables if j < αi or 0 if αi < j. For example, when
m = p = 3, here are E245 and E356,

E245 =



x1,1 1 0 0 0 0
x2,1 0 x2,3 1 0 0
x3,1 0 x3,3 0 1 0


 E356 =



x1,1 x1,2 1 0 0 0
x2,1 x2,2 0 x2,4 1 0
x3,1 x3,2 0 x3,4 0 1


 .

Set |α| := α1 − 1 + α2 − 2 + · · · + αp − p be the number of variables in Eα. For
all small m, p, and α, generate |α| random m × (m+p) matrices M1, . . . ,M|α| and
determine the number of isolated solutions to the system of equations

det

(
Eα

M1

)
= det

(
Eα

M2

)
= · · · = det

(
Eα

M|α|

)
= 0 .

Formulate a conjecture for the number of solutions as a function of m, p, and α.
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2.5 Solving equations with linear algebra

We discuss a connection between the solutions to systems of polynomial equations and
eigenvalues from linear algebra. This leads to further methods to compute and analyze
the roots of a zero-dimensional ideal. The techniques are based on classical results, but
their computational aspects have only recently been developed systematically.

Suppose that K is algebraically closed and I ⊂ K[x1, . . . , xn] is a zero-dimensional
ideal. Our goal is to interpret the coordinates of points in V(I) in terms of eigenvalues of
suitable matrices. This is efficient as numerical linear algebra provides efficient methods
to numerically determine the eigenvalues of a complex matrix, and the matrices we use
are readily computed using Gröbner basis algorithms.

It is instructive to start with univariate polynomials. Given a monic univariate poly-
nomial p = c0 + c1t+ · · ·+ cd−1t

d−1 + td ∈ K[t], the companion matrix of p is

Cp =




0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cd−1




∈ Kd×d . (2.19)

The eigenvalues of a square matrix A are the roots of its characteristic polynomial
χA(t) := det(tId−A), where Id is the appropriately-sized identity matrix. The roots of
a polynomial p are the eigenvalues of its companion matrix Cp.

Theorem 2.5.1. Let p = c0+ · · ·+ cd−1t
d−1+ td ∈ K[t] be a monic univariate polynomial

of degree d ≥ 1. Then p(t) = χCp
(t), the characteristic polynomial of its companion matrix

Cp. Its companion matrix expresses multiplication by t in the ring K[t]/〈p〉 in the basis
1, t, . . . , td−1 of standard monomials.

Proof. For d = 1, the statement is clear, and for d > 1, expanding the determinant along
the first row of tId− Cp yields

det(tId− Cp) = t det(tId− Cq) + (−1)d+1(−1)d−1c0 ,

where Cq is the companion matrix of the polynomial

q := c1 + c2t+ · · ·+ cd−1t
d−2 + td−1 = (p(t)− c0)/t .

Applying the induction hypothesis gives the result.
The claim that the matrix Cp expresses multiplication by t in K[t]/〈p〉 in the basis

1, t, . . . , td−1 of standard monomials is Exercise 1 below.

Let I ⊂ K[x1, . . . , xn] be a zero-dimensional ideal. By Theorems 2.4.1 and 2.4.4, the
K-vector space K[x1, . . . , xn]/I is finite-dimensional, and the cardinality of the variety
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V(I) is bounded from above by the dimension of K[x1, . . . , xn]/I. Given a polynomial
f ∈ K[x1, . . . , xn], write f for its residue class in the quotient ring K[x1, . . . , xn]/I.

For any i = 1, . . . , n, multiplication of an element in K[x1, . . . , xn]/I with the residue
class xi of a variable xi defines an endomorphism mi,

mi : K[x1, . . . , xn]/I −→ K[x1, . . . , xn]/I ,

f 7−→ xi · f = xif .

Lemma 2.5.2. The map xi 7→ mi induces an injection

K[x1, . . . , xn]/I −֒→ End(K[x1, . . . , xn]/I) .

Proof. The map xi 7→ mi induces a map ϕ from K[x1, . . . , xn] to the endomorphism ring.
For polynomials p, f ∈ K[x1, . . . , xn], we have that

ϕ(p).f = p(m1, . . . ,mn).f = p(x1, . . . , xn)f .

This implies that I ⊂ ker(ϕ). Setting f = 1 shows that ker(ϕ) ⊂ I.

This map K[x1, . . . , xn]/I →֒ End(K[x1, . . . , xn]/I) is the regular representation of
K[x1, . . . , xn]/I. We will use it to study the variety V(I). Since K[x1, . . . , xn]/I is a
finite-dimensional vector space with dimension d = deg(I), we may represent each linear
multiplication map mi as a d× d-matrix with respect to a fixed basis of K[x1, . . . , xn]/I.
For this, a basis of standard monomials is both convenient and readily computed.

Let B be the set of standard monomials for I with respect a monomial order ≺. Let
G be a Gröbner basis for I with respect to ≺. For each i = 1, . . . , n, let Mi ∈ MatB×B(K)
be the matrix representing the endomorphism mi of multiplication by the variable xi with
respect to the basis B, which we call the i-th companion matrix of the ideal I with respect
to B. The rows and the columns of Mi are indexed by the monomials in B. For a pair
of monomials xα, xβ ∈ B, the entry of Mi in the row corresponding to xα and column
corresponding to xβ is the coefficient of xα in xi · xβ mod G, the normal form of xi · xβ.

Lemma 2.5.3. The companion matrices commute,

Mi ·Mj = Mj ·Mi for 1 ≤ i < j ≤ n .

Proof. The matrices MiMj and MjMi represent the compositions mi ◦mj and mj ◦mi,
respectively. This follows as multiplication in K[x1, . . . , xn]/I is commutative.

The companion matrices M1, . . . ,Mn generate a subalgebra of MatB×B(K) isomorphic
to K[x1, . . . , xn]/I, by Lemma 2.5.2. As K[x1, . . . , xn]/I is commutative, when K is alge-
braically closed, this subalgebra has a collection of common eigenvectors whose eigenvalues
are characters (homomorphisms to K) of K[x1, . . . , xn]/I. The following fundamental re-
sult allows us to identify the eigenvectors with the points of a ∈ V(I) with corresponding
eigenvalue the evaluation of an element of K[x1, . . . , xn]/I at the point a.
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Theorem 2.5.4 (Stickelberger’s Theorem). Suppose that K is algebraically closed and
I ⊂ K[x1, . . . , xn] is a zero-dimensional ideal. For each i = 1, . . . , n and any λ ∈ K,
the value λ is an eigenvalue of the endomorphism mi if and only if there exists a point
a ∈ V(I) with ai = λ.

Corollary 2.5.5. Let R ⊂ End(K[x1, . . . , xn]/I) be the commutative subalgebra gener-
ated by the endomorphisms m1, . . . ,mn. The joint eigenvectors of R correspond to points
of V(I). For p ∈ K[x1, . . . , xn] and a ∈ V(I), the eigenvalue of p(m1, . . . ,mn) on the
eigenvector corresponding to a is p(a).

For the proof of Stickelberger’s Theorem, we we recall some facts from linear algebra
related to the Cayley-Hamilton Theorem.

Definition 2.5.6. Let V be a vector space over K and φ an endomorphism on V . For any
polynomial p =

∑d

i=0 cit
i ∈ K[t], set p(φ) :=

∑d

i=0 ciφ
i ∈ End(V ), where φi is the i-fold

composition of the endomorphism φ with itself. The ideal Iφ := {p ∈ K[t] | p(φ) = 0}
is the kernel of the homomorphism K[t] → End(V ) defined by t 7→ φ. Its unique monic
generator hφ is the minimal polynomial of φ. ⋄

The eigenvalues and the minimal polynomial of an endomorphism are related.

Lemma 2.5.7. Let V be a finite-dimensional vector space over an algebraically closed
field K and φ be an endomorphism of V . Then an element λ ∈ K is an eigenvalue of φ if
and only if λ is a zero of the minimal polynomial hφ.

Proof. The eigenvalues of φ are the roots of its characteristic polynomial χφ. By the
Cayley-Hamilton Theorem, the characteristic polynomial vanishes on φ, χφ(φ) = 0. Thus
χφ ∈ Iφ and hφ divides χφ.

Let λ1, . . . , λn be the eigenvalues of φ, which are the roots of χφ. Suppose there is
some eigenvalue, say λ1, for which hφ(λ1) 6= 0. That is, the roots of hφ are a proper subset
of the eigenvalues, and we may write

hφ(t) = (t− λ2)
d2(t− λ3)

d3 · · · (t− λm)
dm .

Let v ∈ V be an eigenvector of φ with eigenvalue λ1. For any other eigenvalue λi 6= λ1,
we have (φ− λiI).v = (λ1 − λi).v 6= 0, and so

hφ(φ).v = (φ− λ2)
d2 · · · (φ− λm)

dm .v = (λ1 − λ2)
d2 · · · (λ1 − λm)

dmv 6= 0 ,

which contradicts hφ being the minimal polynomial of φ, so that hφ(φ) = 0.

We can now prove Stickelberger’s Theorem 2.5.4.

Proof of Theorem 2.5.4. Let λ be an eigenvalue of the multiplication endomorphismmi on
K[x1, . . . , xn]/I with corresponding eigenvector v. That is, xiv = λv and thus (xi − λ) · v =
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0 in the vector space K[x1, . . . , xn]/I so that (xi − λ)v ∈ I. Let us assume by way of con-
tradiction that there is no point a ∈ V(I) with ith coordinate λ.

This implies that xi − λ vanishes at no point of V(I). We will use this to show that
xi − λ is invertible in K[x1, . . . , xn]/I. Multiplying the equation (xi − λ) · v = 0 by this
inverse implies that v = 0, which is a contradiction as eigenvectors are non-zero.

By Exercise 5 of Section 1.3, the map K[x1, . . . , xn] → KV(I) is surjective, where KV(I)

is the ring of functions on the finite set V(I). Its kernel is
√
I by Hilbert’s Nullstellensatz.

Thus there exists a polynomial f ∈ K[x1, . . . , xn] with image

f =
∑

a∈V(I)

1

ai − λ
δa

in KV(I) ≃ K[x1, . . . , xn]/
√
I, where δa is the Kronecker delta function, whose value at a

point b is zero unless b = a, and then its value is 1. Then f(a) = 1/(ai − λ) for a ∈ V(I),
from which we obtain

(1 − (xi − λ)f(x)) ∈ I(V(I)) =
√
I .

By Hilbert’s Nullstellensatz, there is a positive integerN such that (1−(xi−λ)f(x))N ∈
I. Expanding this, we obtain

1 − N(xi − λ)f +
(
N

2

)
(xi − λ)2f 2 − · · · ∈ I ,

and so there exists a polynomial g such that 1 − (xi − λ)g ∈ I. Then g is the desired
inverse to xi − λ in K[x1, . . . , xn]/I.

Conversely, let a ∈ V(I) with ai = λ. Let hi be the minimal polynomial of mi. By
Lemma 2.5.7 we need only show that hi(λ) = 0. By the definition of minimal polynomial,
the function hi(mi) is the zero endomorphism on K[x1, . . . , xn]/I. In particular, hi(xi) =
hi(mi)(1) = 0 in K[x1, . . . , xn]/I, which implies that the polynomial hi(xi) ∈ K[x1, . . . , xn]
lies in I. Evaluating this at a point a ∈ V(I) gives 0 = h(a) = h(ai) = h(λ).

Example 2.5.8. Let I = 〈x2y + 1, y2 − 1〉. Then {x4 − 1, y + x2} is a lexicographic
Gröbner basis of I. Hence {1, x, x2, x3} is a basis of K[x, y]/I. With respect to this basis,
the representing matrices of the endomorphisms mx and my are

Mx =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 and My =




0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0


 .

The eigenvalues of Mx are −1, 1,−i, i and the eigenvalues of My are −1 (twice) and 1
(twice). Indeed, we have V(I) = {(i, 1), (−i, 1), (1,−1), (−1,−1)}. ⋄
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While we used a Gröbner basis and basis B of standard monomials to compute com-
panion matrices, Sitckelberger’s Theorem 2.5.4 only requires that we know a basis of
the coordinate ring K[x1, . . . , xn]/I and the companion matrices in this basis. Given
these data, the computational complexity of finding solutions depends on the dimension,
d = deg(I), of K[x1, . . . , xn]/I.

These methods simplify when there exists a joint basis of eigenvectors. That is, if there
exists an invertible matrix S ∈ Kd×d and diagonal matrices Di ∈ Kd×d for i = 1, . . . , n
with

MiS = SDi , for i = 1, . . . , n . (2.20)

Then the columns of S are eigenvectors for each multiplication operator, with the eigen-
values given by the entries of the matrices Di. When (2.20) occurs, then S−1MiS = Di,
so that the companion matrices Mi are simultaneously diagonalizable.

Theorem 2.5.9. The companion matrices M1, . . . ,Mn are simultaneously diagonalizable
if and only if I is radical.

Proof. Suppose that I is radical. Let a = (a1, . . . , an) be a point in V(I). As in the
proof of Theorem 2.5.4, there exists a polynomial ga ∈ K[x1, . . . , xn] with ga(a) = 1 and
ga(b) = 0 for all b ∈ V(I) r {a}. Hence, the polynomial (xi − ai)ga vanishes on V(I).
Hilbert’s Nullstellensatz then implies (xi− ai)ga ∈

√
I = I, and thus ga ∈ K[x1, . . . , xn]/I

is a joint eigenvector of M1, . . . ,Mn, with the eigenvalue of Mi equal to the coordinate ai
as in Corollary 2.5.5. As I is radical, V(I) consists of d = deg(I) = dim(K[x1, . . . , xn]/I)
points, and so we have found a joint basis of eigenvectors for the companion matrices Mi.

Conversely, if the companion matrices M1, . . . ,Mn are simultaneously diagonalizable,
then for every every polynomial f ∈ K[x1, . . . , xn], the matrix f(M1, . . . ,Mn) is simul-
taneously diagonalizable, as f(M1, . . . ,Mn)S = Sf(D1, . . . , Dn). Thus f(M1, . . . ,Mn) is
nilpotent only if it is the zero matrix. By Lemma 2.5.2, this implies that I is radical.

Stickelberger’s Theorem 2.5.4 not only connects classical linear algebra to the problem
of finding the common zeroes of a zero-dimensional ideal, but it leads to another method
to compute eliminants.

Corollary 2.5.10. Suppose that I ⊂ K[x1, . . . , xn] is a zero-dimensional ideal. The
eliminant g(xi) is the minimal polynomial of the operator mi of multiplication by xi on
K[x1, . . . , xn]/I. It is a factor of the characteristic polynomial χmi

of mi which contains
all its roots.

This leads to an algorithm to compute the eliminant g(xi) of the radical of I.

Algorithm 2.5.11.

Input: A zero-dimensional ideal I ⊂ K[x1, . . . , xn] and an index i with 1 ≤ i ≤ n.
Output: The eliminant g(xi) of the radical of I.

Compute a Gröbner basisG for I with respect to any monomial order≺. If dim(I) 6= 0,
then exit, else let B be the corresponding finite set of standard monomials.
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Construct Mi, the matrix in MatB×B(K) representing multiplication by xi in the quo-
tient ringK[x1, . . . , xn]/I in the basis of standard monomials. Let χmi

be the characteristic
polynomial of Mi, and set g(xi) to be the square-free part of χmi

, χmi
/ gcd(χmi

, χ′
mi
).

The proof of correctness of this algorithm is Exercise 7.

Exercises

1. Let p = c0 + · · ·+ cd−1t
d−1 + td be a monic, univariate polynomial and set I := 〈p〉.

Show that the matrix Mt representing the endomorphism mt : R/I → R/I, f 7→ tf
with respect to a natural basis coincides with the companion matrix Cp.

2. Let G := {x4 − 3x2 − 2x + 1, y + x3 − 3x− 1} and I := 〈G〉 be an ideal in C[x, y].
Show that G is a Gröbner basis of I for the lexicographic order x ≺ y, determine
the set of standard monomials of C[x, y]/I and compute the multiplication matrices
Mx and My.

3. Let f ∈ K[x1, . . . , xn]. Show that mf : K[x1, . . . , xn]/I → K[x1, . . . , xn]/I, where
mf : g 7→ f · g is an endomorphism.

4. In a computer algebra system, use the method of Stickelberger’s Theorem to deter-
mine the common complex zeroes of x2 + 3xy + y2 − 1 and x2 + 2xy + y + 3.

5. If two endomorphisms f and g on a finite-dimensional vector space V are diagonal-
izable and f ◦ g = g ◦ f , then they are jointly diagonalizable. Conclude that for
Stickelberger’s Theorem for the ring K[x, y] with only two variables, there always
exist a basis of joint eigenvectors.

6. Perform the following computational experiment.

Generate two bivariate polynomials f, g ∈ K[x, y].

(a) Compute their resultant Res(f, g; x) ∈ K[y].

(b) Compute their eliminant 〈f, g〉 ∩K[y], using a lexicographic Gröbner basis.

(c) Compute the characteristic polynomial of the companion matrix My.

Compare the timings for these three operations for a number of polynomial pairs of
moderate to extreme order. Which is more efficient ?

7. Prove the correctness of Algorithm 2.5.11.
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2.6 Notes

Resultants were developed in the nineteenth century by Sylvester, were part of the compu-
tational toolkit of algebra from that century, and have remained a fundamental symbolic
tool in algebra and its applications. Even more classical is Bézout’s Theorem, stated by
Etienne Bézout in his 1779 treatise Théorie Générale des Équations Algébriques [12, 13].
Perhaps mention that Chinese mathematicians could eliminate up to 4 variables?

The subject of Gröbner bases began with Buchberger’s 1965 Ph.D. thesis which con-
tained his algorithm to compute Gröbner bases [20, 21]. The term “Gröbner basis” honors
Buchberger’s doctoral advisor Wolfgang Gröbner. Key ideas about Gröbner bases had
appeared earlier in work of Gordan and of Macaulay, and in Hironaka’s resolution of sin-
gularities [60]. Hironaka called Gröbner bases “standard bases”, a term which persists.
For example, in the computer algebra package Singular [44] the command std(I); com-
putes the Gröbner basis of an ideal I. Despite these precedents, the theory of Gröbner
bases rightly begins with Buchberger’s contributions.

Theorem 2.3.3 was proven by Macaulay [84], who the Gröbner basis package Macaulay
2 [43] is named after.

There are additional improvements in Buchberger’s algorithm (see Ch. 2.9 in [25] for
a discussion), and even a series of completely different algorithms due to Jean-Charles
Faugère [37] based on linear algebra with vastly improved performance.

The FGLM Gröbner basis conversion algorithm for zero-dimensional ideals is due to
Faugère, Gianni, Lazard, and Mora [38].

For further information on techniques for solving systems of polynomial equations
see the books of Cox, Little, and O’Shea [26, 25], Sturmfels [138] as well as Emiris and
Dickenstein [31].

For numerical methods concerning the simultaneous diagonalization of matrices we
refer the reader to Bunse-Gerstner, Byers, and Mehrmann [22]. In Section 5.3, a further
refinement of the eigenvalue techniques will be used to study real roots.

Where is a reference to Stickelberger’s Theorem? David Cox is chasing this down.


