Algorithmic Algebraic Geometry

1. Let \succ be the degree reverse lexicographic monomial order on $\mathbb{Q}[x, y, z]$ where $x \succ y \succ z$.

Let $f=x y^{2} z^{2}+x z-y z$ and $G=\left(x-y^{2}, y-z^{3}, z^{2}-1\right)$.
(a) Compute $f \bmod G$.
(b) Compute $f \bmod G^{\prime}$, where G^{\prime} is each of the two cyclic rotations of G.
2. What monomial order gives the smallest (in bit-size) Gröbner basis for the ideal $\left\langle x y^{2}+2 x z+x^{4}-y\right.$, $\left.7 y z+y x^{2}+y-z, 3 z x+z y^{2}+z-5 y\right\rangle$? This is a contest. The winner gets a Klein Bottle.
3. Suppose that $x_{1} \prec x_{2} \prec \cdots$. This is the reverse from other problems.
(a) Use Buchberger's algorithm to compute by hand the reduced Gröbner basis for $\left\langle x_{1}+x_{2}, x_{1} x_{2}\right\rangle$, and for $\left\langle x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, x_{1} x_{2} x_{3}\right\rangle$ with respect to the degree reverse lexicographic order.
(b) Do the same for the lexicographic order.
4. Suppose that $x_{1} \prec x_{2} \prec \cdots$. The elementary symmetric polynomials are defined recursively by $e_{k}\left(x_{1}, \ldots, x_{n}\right)=$ 0 when $k>n, e_{0}:=1, e_{1}\left(x_{1}\right):=x_{1}$, and $e_{k}\left(x_{1}, \ldots, x_{n+1}\right):=e_{k}\left(x_{1}, \ldots, x_{n}\right)+x_{n+1} e_{k-1}\left(x_{1}, \ldots, x_{n}\right)$. Write a program in either Macaulay2 or Singular to compute a Gröbner basis for the ideal $\left\langle e_{k}\left(x_{1}, \ldots, x_{n}\right) \mid 1 \leq k \leq n\right\rangle$ given n, in both lexicographic and degree reverse lexicographic monomial orders, and run this for several values of n. Email your program, and the ones for 1 and 2, to Elise Walker walkere@math.tamu.edu. Follow the instructions at . . ./~~sottile/teaching/20.1/CAG_HW.html.
What do you conjecture is the reduced Gröbner basis for this ideal? Can you prove your conjecture?
5. Suppose that $x \succ y \succ z$ in $\mathbb{Q}[x, y, z]$. Yes/no is not sufficient. Prove your assertions.
(a) Is $\left\{x^{4} y^{2}-z^{5}, x^{3} y^{3}-1, x^{2} y^{4}-2 z\right\}$ a Gröbner basis for the ideal it generates with respect to the degree reverse lexicographic order?
(b) The same question, but for $\left\{x-z^{2}, y-z^{3}\right\}$ with respect to the lexicographic order.
6. Let $f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials with relatively prime initial terms, which we assume are mononials.
(a) Show that $\operatorname{Spol}(f, g)=-(g-\operatorname{in}(g)) f+(f-\operatorname{in}(f)) g$. Deduce that the initial monomial of $\operatorname{Spol}(f, g)$ is a multiple of either the initial monomial of f or the initial monomial of g.
(b) Analyze the steps of the reduction computing $\operatorname{Spol}(f, g) \bmod (f, g)$ using the division algorithm to show that this is zero.
7. Let \succ be any monomial order and G be a list of homogeneous polynomials. Show that for any homogeneous polynomial f, its reduction modulo G is also homogeneous.

Show that Buchberger's algorithm computes a reduced Gröbner basis consisting of homogeneous polynomials. Deduce that the reduced Gröbner basis of a homogeneous ideal consists of homogeneous polynomials.
8. Describe how Buchberger's algorithm behaves when it computes a Gröbner basis from a list of monomials.
9. Suppose that I is an ideal generated by linear forms. Describe its reduced Gröbner basis.
10. Let U be a universal Gröbner basis for an ideal I in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Show that for every subset $Y \subset\left\{x_{1}, \ldots, x_{n}\right\}$ the elimination ideal $I \cap \mathbb{K}[Y]$ is generated by $U \cap \mathbb{K}[Y]$.

