Algorithmic Algebraic Geometry

Frank Sottile
January 2020

Fourth Homework

Due Monday, 27 January 2020.
Please write up your homework neatly. Hand in 1,2,3 to Frank. Write computer scripts for 4, 5, and 6 (except for the challenge on 5). Send the scripts to Thomas: thomasjyah1@math.tamu.edu

1. Suppose that a_{1}, \ldots, a_{m} are the roots of $f(x)$ and b_{1}, \ldots, b_{n} are the roots of $g(x)$. In the proof of the formula

$$
\begin{equation*}
\operatorname{Res}(f, g ; x)=f_{0}^{n} g_{0}^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(a_{i}-b_{j}\right) \tag{1}
\end{equation*}
$$

for the resultant (in which (1) is an identity in $\mathbb{Z}\left[f_{0}, g_{0}, a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]$), it was asserted that the resultant was divisible by each factor $\left(a_{i}-b_{j}\right)$. Please give a proof of that claim (which may involve the Nullstellensatz and likely uses unique factorization of polynomials).
2. Suppose that the polynomial $g=g_{1} \cdot g_{2}$ factors. Show that the resultant also factors, $\operatorname{Res}(f, g ; x)=\operatorname{Res}\left(f, g_{1} ; x\right) \cdot \operatorname{Res}\left(f, g_{2} ; x\right)$.
3. Suppose that a_{1}, \ldots, a_{m} are the roots of $f(x)$. Prove the equality of the two formulas for the discriminant:

$$
\operatorname{disc}_{m}(f):=(-1)^{\binom{m}{2}} \frac{1}{f_{0}} \operatorname{Res}\left(f, f^{\prime}\right)=f_{0}^{2 m-2} \prod_{i<j}\left(a_{i}-a_{j}\right)^{2},
$$

Hint: First prove the formula: $f^{\prime}\left(a_{i}\right)=f_{0}\left(a_{i}-a_{1}\right) \cdots\left(\widehat{a_{i}-a_{i}}\right) \cdots\left(a_{i}-a_{m}\right)$, where a_{1}, \ldots, a_{m} are the roots of $f(x)$ and $\left(\widehat{a_{i}-a_{i}}\right)$ indicates that this term is omitted.
4. Use Gröbner bases to solve the system of equations $f=g=h=0$, where

$$
\begin{aligned}
& f:=1574 y^{2}-625 y x-1234 y+334 x^{4}-4317 x^{3}+19471 x^{2}-34708 x+19764+45 x^{2} y-244 y^{3}, \\
& g:=45 x^{2} y-305 y x-2034 y-244 y^{3}-95 x^{2}+655 x+264+1414 y^{2}, \quad \text { and } \\
& h:=-33 x^{2} y+197 y x+2274 y+38 x^{4}-497 x^{3}+2361 x^{2}-4754 x+1956+244 y^{3}-1414 y^{2} .
\end{aligned}
$$

These polynomials are in a file available on the course web site.
5. Suppose that a, b, c are complex numbers such that

$$
a+b+c=3, a^{2}+b^{2}+c^{2}=5, \text { and } a^{3}+b^{3}+c^{3}=7
$$

Use Gröbner bases to show that $a^{4}+b^{4}+c^{4}=9$. Show that $a^{5}+b^{5}+c^{5} \neq 11$. What are $a^{5}+b^{5}+c^{5}$ and $a^{6}+b^{6}+c^{6}$? Challenge: Can you find a formula for $a^{n}+b^{n}+c^{n}$?
6. Suppose that $f=x^{2}+y^{2}+z^{2}-4$ and $g=4 x^{2}-4 y^{2}+(2 z-3)^{2}-1$. Use a resultant to compute $\pi(\mathcal{V}(f, g))$ where $\pi:(x, y, z) \mapsto(x, y)$.
Suppose that f and g are general polynomials in $\mathbb{C}[x, y, z]$ of degrees a and b, respectively, what do you expect is the degree of $\operatorname{Res}(f, g ; z)$? Why ? (This is for discussion.)
7. What happens to the Sylvester matrix $\operatorname{Syl}(f, g)$ if $m \geq n$ and f is replaced by the first remainder in the Euclidean Algorithm applied to f and g ?
8. Suppose that G is a reduced Gröbner basis for an ideal I with respect to a monomial order \prec. Let $w \in \mathbb{N}^{n}$ be a weight vector such that for $g \in G, \mathrm{in}_{w} g=\mathrm{in}_{\prec} g$.
(a) Prove that $\mathrm{in}_{w} I=\left\langle\mathrm{in}_{w} f \mid f \in I\right\rangle=\mathrm{in}_{\prec} I$. In particular $\mathrm{in}_{w} I$ is a monomial ideal.
(b) (This is for a discussion.) How do our algorithms, multivariate division, ideal membership, Buchberger, etc. perform using in_{w} in place of \prec (using them on generators of I)? What if we use G ?

