Foundations of Mathematics Tuesday 25 August 2020

 Math 300 Sections 902, 905

 Math 300 Sections 902, 905
 Class worksheet

Answers to Concept Quiz 2

1. Which of the following is a valid definition of an even integer? Check all that apply.

N An integer n is even if it is not odd.
Y An integer n is even if there is an integer a such that $n=2 a$.
N An even integer n is an integer such that n^{2} is even.
N $\ldots,-4,-2,0,2,4, \ldots$
N An integer n is even if there is a number r such that $n=2 r$.

Foundations of Mathematics Tuesday 25 August 2020

Math 300 Sections 902, 905
 Class worksheet

Worksheet

Definition. An integer n is an even integer (or simply even) if there is an integer a such that $n=2 a$. An integer n is an odd integer (odd) if there is an integer a such that $n=2 a+1$.

1. Consider the following statement: "If m is an even integer, then $m+1$ is an odd integer."

Construct a know-show table for a proof of this statement.
Write a proof of this statement in paragraph form.
2. Criticize (discuss its shortcomings) the following "proof" that if m and n are even, then $m+n$ is even:

We know that $n=2 t$ and $m=2 t$, so $m+n=2 t+2 t=4 t$. Therefore $m+n$ is even.
Write out a correct proof, first constructing a know-show table, and then writing it out in paragraph form.
3. Consider the following statement:
"If m is an even integer and n is an integer, then $m n$ is an even integer."
Construct a know-show table for a proof of this statement.
Write a proof of this statement in paragraph form.
4. Is the following statement true or false? Justify your conclusions.
"If a, b, and c are integers, then $a b+a c$ is an even integer."

