Foundations of Mathematics Tuesday 1 September 2020

Note: \mathbb{R} is the real numbers, \mathbb{Q} is the rational numbers, \mathbb{Z} is the integers, and \mathbb{N} is the natural numbers (which begin with 0).

- 1. Write the converse and contrapositive of the following conditional statements
 - (a) If it rains, then the grass is wet.
 - (b) $\alpha^2 = 25$ if $\alpha = 5$.
 - (c) The integer a is odd only if 3a is odd.
 - (d) "Inattentive when bored"
- 2. Write a useful negation of each of the following statements. Do not leave a negation as the prefix of a statement. For example, the negation of "I will water my garden and pick basil" is "I will not water my garden or I will not pick basil".
 - (a) You will walk or take the bus.
 - (b) Knowledge is necessary for truth
 - (c) Country and Western
 - (d) If you wash the dishes or put away the laundry, you can have some chocolate.
- 3. Let a, b, and c be integers. Consider the following conditional statement:

If a divides bc, then a divides b or a divides c.

Which of the following statements have the same meaning as this conditional statement, and which are negations of this conditional statement"

- (a) If a divides b or a divides c, then a divides bc.
- (b) If a does not divide b or a does not divide c, then a does not divide bc.
- (c) a divides bc, a does not divide b, and a does not divide c.
- (d) If a does not divide b and a does not divide c, then a does not divide bc.
- (e) a does not divide bc or a divides b or a divides c.

- 4. Use the roster method to specify the elements in each of the following sets and then write a sentence in English describing the set.
 - (a) $\{x \in \mathbb{R} \mid x^2 2x 4 = 0\}.$
 - (b) $\{n \in \mathbb{Z} \mid n^2 < 27\}.$
 - (c) $\{n \in \mathbb{N} \mid n^2 < 27\}.$
 - (d) $\{x \in \mathbb{Q} \mid x^2 2x 4 = 0\}.$
- 5. Use set builder notation to specify the following sets.
 - (a) The set of all natural numbers with square at least 15.
 - (b) The set of all odd integers.
 - (c) The set of all real numbers at most 10 whose square exceeds 3.
 - (d) The set of positive rational numbers.