Foundations of Mathematics Thursday 3 September 2020

Math 300 Sections 902, 905 Concept Quiz

Answers to Concept Quiz 2.4

1. Consider the assertion: If x is a rational number, then \sqrt{x} is a rational number. Which of the following is its negation:
\times If x is a rational number, then \sqrt{x} is not a rational number.
\times No rational numbers have rational square roots
\times There exists a rational number x such that \sqrt{x} is a rational number.
\checkmark There exists a rational number x such that \sqrt{x} is not a rational number.
\times If x is not a rational number, then \sqrt{x} is a rational number.
2. Let A and B be sets. Then $A=B$ if...

- they have precisely the same elements
- $(\forall x \in A)(x \in B) \wedge(\forall x \in B)(x \in A)$
- $(\forall x)((x \in A) \leftrightarrow(x \in B))$
- $A \subset B$ and $B \subset A$. This is more properly a consequence of the definition.

3. Which of the following sentences is true?
$\times(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=0)$.
$\checkmark(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=0)$.
$\times(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y \neq 0)$.
$\times(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=0)$.
$\checkmark(\exists x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=0)$.
