## Foundations of Mathematics Tuesday 8 September 2020

## Math 300 Sections 902, 905 <br> Class worksheet

Definition. Let $a$ and $b$ be integers with $a$ nonzero. We say that $a$ divides $b$ if there exists an integer $c$ such that $b=a c$. When this occurs, we write $a \mid b$.

Definition. Let $n$ be a positive integer and $a$ and $b$ be integers. We say that $a$ is congruent to $b$ modulo $n$ if $n$ divides the difference $(a-b)$. When this occurs, we write $a \equiv b \bmod n$.

1. Consider the following statement:

For integers $a, b$, and $c$ with $a \neq 0$, if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(a) Explore how this may be true or not by trying some instances with $a, b, c$ actual integers. Look for some aspect of this that you might be able to use in a proof.
(b) Construct a "know-show" table for a proof of this statement.
(c) Write your proof in paragraph form.
2. Consider congruence modulo 5 .
(a) Choosing different pairs of integers $a, b$ that are congruent modulo 5 , what happens (e.g. with respect to congruence) when you add the same integer to each integer in a given pair?
(b) The same question, but when you add two different integers which are themselves congruent modulo 5.
(c) Try to formulate a conjecture about how congruence behaves when adding pairs of integers in this way.
(d) What if you change 5 to any other positive integer?
3. Consider the conjecture we formulated about adding and congruence modulo 5
(a) Construct a "know-show" table for a proof of this statement.
(b) Write your proof in paragraph form.

