Foundations of Mathematics Tuesday 22 September 2020

Definition. An integer a is even if there is an integer k such that n = 2k. An integer a is odd if there is an integer k such that n = 2k+1. (We assume the following result, which we cannot yet prove: Every integer n is either even or odd.

Definition. Let *a* be a nonnegative real number. The square root of *a*, written \sqrt{a} is the unique positive real number *r* such that $r^2 = a$.

(It is a theorem in analysis that every nonnegative real number has a nonnegative square root, and we are assuming this for this definition.)

- 1. Prove the following by contradiction reductio ad absurdum: For all integers n, if n^2 is odd, then n is odd.
- 2. Prove the following by contradiction reductio ad absurdum: For all real numbers a and b with $b \ge 0$, if $a^2 \ge b$, then either $a \ge \sqrt{b}$ or $a \le -\sqrt{b}$.
- 3. Using the definitions, prove by cases that for every integer n, $n^2 n + 41$ is odd.