Foundations of Mathematics Thursday 24 September 2020

Answers to Concept Quiz 4.1

1. **Principle of Mathematical Induction.** Let P(n) be a statement for every positive integer n. Suppose that we want to prove that P(n) is true for all positive integers n, that is, $\forall n \in \mathbb{N}(P(n))$ (Here, \mathbb{N} starts with 1). If we show that Step 1:

P(1) is true.

and Step 2:

For every positive integer k, if P(k) is true, then P(k+1) is true.

Then P(n) is true for all positive integers n.

2. Inductive Sets. Give the definition of an inductive set.

A subset T of the integers \mathbb{Z} is an *inductive set* provided that for every integer k, if $k \in T$, then $k+1 \in T$.

Can a finite, nonempty set of integers be an inductive set?

No.

Is the empty set, $\emptyset = \{\}$ an inductive set?

Yes.

Is the set of even integers an inductive set?

No.