Foundations of Mathematics Tuesday 29 September 2020

Math 300 Sections 902, 905 Concept Quiz

Answers to Concept Quiz 4.1.2

1. Principle of Mathematical Inductionubset version .

Suppose that T is a subset of \mathbb{N}. The Principle of Mathematical Induction allows us to conclude/assert that $T=\mathbb{N}$ if we can show that T has two properties. What are these properties?
Property/Step 1:
$1 \in T$.
Property/Step 2:
For every positive integer k, if $k \in T$, then $k+1 \in T$.

2. Summation Notation.

Recall the notation for summation (you saw this in Calculus). Suppose that $f(i)$ is a function of an integer i. Let b be an integer. Then $\sum_{a=1}^{b} f(a)$ is shorthand for $f(1)+\cdots+f(b)$. That is, we substitute each integer between 1 and b for the variable a in the function/expression $f(a)$ and add all of these up. The following will test your understanding of this notation. All symbols, i, j, k, ℓ, n, \ldots are positive integers.
(a) What is $\sum_{i=2}^{5} i$ equal to?

This is $2+3+4+5=14$.
(b) What is $\sum_{n=0}^{k} 2^{n}$ equal to?

This is $2^{0}+2^{1}+\cdots+2^{k}=1+2+\cdots+2^{k}=2^{k+1}-1$.
(c) What is $\sum_{j=1}^{n} \ell^{2}$ equal to?

This is $\ell^{2}+\ell^{2}+\cdots+\ell^{2}(n$ summands $)$, so it is $n \ell^{2}$.

