Foundations of Mathematics
 Thursday 8 October 2020
 Math 300 Sections 902, 905
 Concept Quiz

Answers to Concept Quiz 5.1

1. Set operations Let V, C, and F be sets. What is the set of members of F that are not members of C and also not members of V ?
$\times V-C$.
$\times(F-V) \cup(F-C)$.
$\times V-(C \cup F)$.
$\checkmark F-(C \cup V)$.
$\times V-(C \cap F)$.
$\times(C \cup F)-V$.
2. More set operations Consider the following sets: Here, the universal set is \mathbb{N}. $A:=\{n \in$ $\mathbb{N} \mid n \equiv 0 \bmod 5\} B:=\{n \in \mathbb{N} \mid n \equiv 0 \bmod 4\} C:=\{n \in \mathbb{N} \mid n \equiv 0 \bmod 2\}$ The number 18 is a member of which sets (select all that apply).
$\checkmark B \cup C$
$\times A \cup B$
$\times A \cap C$
$\checkmark B^{c}$
$\checkmark A^{c}-B$
$\times B-A$
$\times C^{c}-B$
3. Sets and logical statements Suppose that A and B are subsets of some universal set U. Which of the following are equivalent to $A^{c} \subseteq B$?
$\times(\forall x \in U)(x \in A \rightarrow x \in B)$
$\checkmark \quad(\forall x \in U)(x \notin A \rightarrow x \in B)$
$\checkmark \quad(\forall x \in U)(x \notin B \rightarrow x \in A)$
$\times(\forall x \in U)(x \in B \rightarrow x \notin A)$
