Foundations of Mathematics Thursday 12 November 2020

Answers to Concept Quiz Sections 7.1-2

State of Relations. Let ~ be the relation on the States of the United States in which for any two states S and T, we have $S \sim T$ if and only if S and T share a land border. For example Texas ~ Oklahoma, but Texas $\not\sim$ California.

• Is Oklahoma \sim New Mexico?

 (\checkmark) Yes

- Is Washington DC ~ Virginia?
- (\times) No Washington DC is not a state.
- Is Missouri ≁ Tennessee?
- (\times) No They share a border.

Transitivity. Recall that a relation R on a set A is *transitive* if and only if for all $a, b, c \in A$, if aRb and bRc, then aRc.

• Let \leq be the usual relation on the real numbers \mathbb{R} of less than or equal to. Is \leq transitive?

(\checkmark) Yes This is one of the basic properties of \leq .

• Define \sim on \mathbb{R} by $a \sim b$ if a + b is a rational number. Is \sim transitive?

(×) No $2 + \pi \sim -\pi$ and $-\pi \sim \pi$, but $(2 + \pi) + \pi = 2 + 2\pi \notin \mathbb{Q}$, so that $2 + \pi \not\sim \pi$.

• Let *m* be a positive integer. Define the relation \sim on $\mathbb{Z} \times \mathbb{Z}$ by $a \sim b$ if $a \equiv b \mod m$. Is \sim transitive?

 (\checkmark) Yes We proved this earlier in the semester.

• Let < be the relation defined for $r \in \mathbb{R}$ and $q \in \mathbb{Q}$ by r < q if q - r is positive. Is < transitive?

 (\times) No This is not a relation on a set A, so it cannot be transitive.