Math 300/220
 Problems from Tests II Fall 2020

1. Prove the following statement: For all real numbers a, b, if $a+b$ is irrational, then either a is irrational or b is irrational.
2. Let $x \in \mathbb{R}$ and assume that for all $\epsilon>0,|x|<\epsilon$. Prove that $x=0$. (Hint: Prove the implication by contradiction, suppose that $x \neq 0$ and find a specific $\epsilon>0$ that contradicts the hypothesis.)
3. Let A and B be sets. Give the formal definition of the complement of B in A.

Suppose that A is the set of positive even integers and B is the set of prime numbers. Describe the complement of B in A.
4. Let A be the set $\{\emptyset,\{\emptyset\},\{\emptyset,\{\{\emptyset\}\}\}\}$.
(a) What is $|A|$?
(b) What is $|\mathcal{P}(A)|$?
(c) What is $|\mathcal{P}(A)-A|$?
(d) Is $\{\emptyset,\{\emptyset\}\} \in A$?
(e) Is $\{\emptyset,\{\emptyset\}\} \in \mathcal{P}(A)$?
5. Let A and B be sets.
(a) Give the formal definition of subset. That is, complete the sentence:"We say that A is a subset of B, written $A \subseteq B$, if. .."
(b) Write the condition $A \subseteq B$ as a statement involving a universal quantifier. You may assume that there is a universal set U containing both A and B.
6. For a set A, let $\mathbf{P}(A)$ denote its power set, the set of all subsets of A. Suppose that $A:=$ $\{\square, \bigcirc, \triangle, \boldsymbol{\uparrow}\}$. Which of the following are true and which are false.
(a) $\{\triangle\} \subseteq \mathbf{P}(A)$.
(b) $\emptyset \subseteq \mathbf{P}(A)$.
(c) $\emptyset \in \mathbf{P}(A)$.
(d) $\{\bigcirc, \square\} \in \mathbf{P}(A)$.
(e) $\{\emptyset\} \in \mathbf{P}(A)$.
(f) $\{\emptyset\} \subseteq \mathbf{P}(A)$.
(g) $\{\{\square\},\{\triangle, \boldsymbol{\uparrow}\}\} \subseteq \mathbf{P}(A)$.
7. Let A and B be sets. Prove, using the definition of subset and union, that $A \subseteq A \cup B$.
8. Let A, B, and C be subsets of a universal set U.

Give the definitions for (a) $A \cup B$ and for (b) $A \subset C$.
Prove that for all sets A and B, we have $A \subset A \cup B$.
9. Let A and B be subsets of a universal set U. Prove that $(A \cup B) \cap A^{c}=B-A$.
10. Let A be a set. What is/are:
(a) $A \cup \emptyset$.
(b) $A \cap \emptyset$.
(c) $A-\emptyset$.
(d) $A \times \emptyset$.
(e) $\mathcal{P}(\emptyset) . \quad(\mathcal{P}()$ is power set.)

No proofs are necessary.
11. Suppose that $A:=\{2,3,5,7\}$ and $B:=\{3,4,7\}$. Find the following sets:
(a) $A \cap B$.
(b) $A \cup B$.
(c) $A \times B$.
(d) $A-B$.
(e) $B-A$.
(f) $\mathbf{P}(A \cap B)$, the power set of the intersection of A and B.
12. Let A and B be subsets of a given universal set U. Prove the de Morgan law that

$$
(A \cap B)^{c}=A^{c} \cup B^{c} .
$$

13. Let A and B be sets. Prove, using the definition of subset and intersection, that $A \cap B \subseteq A$.
14. Let A and B be sets with $A \subset B$. Prove that the power set of A is a subset of the power set of B, that is, prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
15. (True/False/Counterexample.) For each statement, determine whether it is true or false, and accordingly write " T " or " F " in the blank. If the statement is false, provide a counterexample. (No need to prove true statements.)
__ For all sets A and $B, A \subseteq B$ if and only if $B \cap A=A$.
\qquad For all subsets A and B of a universal set $U, A^{c} \subseteq B^{c}$ if and only if $A \subseteq B$.
\ldots For all sets A, B, and $C, A \cup(B \cap C)=(A \cup B) \cap C$.
_ Each set consisting of three elements has exactly eight subsets.
\ldots For all integers $n, \quad(-\infty, n] \cup[-n, \infty)=\mathbb{R}$.
16. State the Principal of Mathematical Induction. It should begin: "For each positive integer n, let $P(n)$ be a statement."
17. Prove by mathematical induction that for each positive integer n,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

18. Use induction to prove that, for all positive integers n, we have

$$
1+2+3+\cdots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

19. The Fibonnaci numbers, $\left\{f_{n} \mid n \geq 1\right\}$ are defined by $f_{1}=f_{2}=1$, and for $n \geq 2 f_{n+1}=$ $f_{n}+f_{n-1}$. Prove that for all $n \geq 1, f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$.
20. Let $a_{1}=1, a_{2}=7$, and $a_{n+1}=7 a_{n}-12 a_{n-1}$ for all positive integers $n \geq 2$. Prove that for all positive integers $n, a_{n}=4^{n}-3^{n}$.
21. Prove the following formula using the Principle of Mathematical Induction.

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

(The sum is $\frac{1}{1(2)}+\frac{1}{2(3)}+\frac{1}{3(4)}+\cdots+\frac{1}{n(n+1)}$. .
22. Consider the open sentence $P(n): 9+13+\cdots+(4 n+5)=\frac{4 n^{2}+14 n+1}{2}$.
(a) Verify the implication $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$.
(b) Does it follow that $P(n)$ is true for all $n \in \mathbb{N}$?
23. Let \mathbf{E} and \mathbf{O} denote the sets of even and odd integers, respectively. Prove that $\mathscr{P}:=\{\mathbf{E}, \mathbf{O}\}$ is a partition of the integers \mathbf{Z}.
24. Let A be a nonempty set. Give the definition of a partition of A. Give a partition of the set $A:=\{\square, \bigcirc, \triangle, \diamond\}$.
25. For each of the following, give its definition as used in our course. Suppose that A and B are sets, that x is a real number, and that a, b, m are integers with $m>1$.
(a) $A-B$.
(b) $|x|$, the absolute value of x.
(c) a divides b.
(d) a is congruent to b modulo m.

