Math 300 Problems from Tests III Fall 2020

1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by

$$f(n) = \begin{cases} 2n+4 & \text{if } n \text{ is even} \\ 2n-4 & \text{if } n \text{ is odd} \end{cases}$$

- (a) What is $f[\{1, 2, 3, 4, 5, 6\}]$?
- (b) What is $f^{-1}[\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}]$?
- (c) What is the range of f? Justify your answer.
- (d) Is f injective? Justify your answer.
- 2. Let A and B be sets and X and Y be subsets of A. Suppose that $f: A \to B$ is an injective function. Prove that f(X) f(Y) = f(X Y).
- 3. Let A, B and C be sets and suppose that $f: A \to B$ and $g: B \to C$ are functions. Prove that if $g \circ f$ is surjective, then g is surjective.
- 4. Let X, Y, Z be sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) Prove that if $g \circ f$ is one-to-one, then f is one-to-one.
 - (b) Give an example of functions f and g for which $g \circ f$ is one-to-one and g is not one-to-one.
- 5. Let A and B be sets and suppose that $f: A \to B$ is a function. Give definitions for the following notions. (I am looking for answers that are complete sentences and mathematically precise.)
 - (a) The *image*, f(X) of X under f, where X is a subset of A.
 - (b) The inverse image, $f^{-1}(Y)$ of Y under f, where Y is a subset of B.
 - (c) The function f is one to one.
- 6. Let $\mathbb{N} := \{0, 1, ...\}$ be the nonnegative integers. Define a relation R on $\mathbb{N} \times \mathbb{N}$ by

(a, b)R(c, d) if and only if a + d = b + c.

Prove or disprove: R is an equivalence relation.

- 7. Let $a, b \in \mathbb{Z}$ be integers. Prove that $(a, b) = 1 \implies (ab, a + b) = 1$. (Here, (x, y) is the greatest common divisor of the integers x and y.)
- 8. A congruence class $[a]_9$ is *invertible modulo* 9 if there is a $[b]_9$ such that $ab \equiv 1 \mod 9$ (equivalently, if $[a]_9 *_9 [b]_9 = [ab]_9 = [1]_9$.) Which congruence classes modulo 9 are invertible modulo 9? For each, what is its inverse modulo 9?

(The congruence classes modulo 9 are $\{[0], [1], [2], [3], [4], [5], [6], [7], [8]\}$). Note that I dropped the $_9$ from these, writing [2] for [2] $_9$. It would be fine were you to drop the [] in your answer/calculations, if you wanted.)