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The Navier–Lamé operator of classical elasticity, µ∆v+(λ+µ)∇(∇·v), is the sim-
plest example of a linear differential operator whose second-order terms involve a
coupling among the components of a vector-valued function. Similar operators on
Riemannian manifolds arise in conformal geometry and in quantum gravity. (In
the latter context they have come to be called “nonminimal”, but “exotic” is pro-
posed as a better term.) The heat kernel of such an operator has a short-time ex-
pansion in terms of geometrical invariants: K(t, x, x) ≈ (4πt)−d/2

∑

n≥0 t
nan(x);

but the traditional methods of calculating an for nonexotic operators do not ap-
ply in this situation. For the special case of operators a2dδ + b2δd on differential
forms, the Hodge decomposition has been used to reduce the problem to that
for the usual Laplacians on forms (which are not exotic). More general exotic
operators can be handled, in principle, by the calculus of pseudodifferential oper-
ators. Indeed, all the integrations encountered can be carried out in closed form;
these are Cauchy integrals over the spectral parameter, Gaussian integrals over
the radial coordinate in Fourier space, and angular integrals over the unit sphere
in Fourier space. Unfortunately, the numbers of terms in intermediate steps of
the calculations are so great that computer assistance seems necessary. Progress
is reported on the reduction of this complexity with the aid of both commercial
computer algebra software and direct computer programming.

Physics, old and new. Let Ω be a region in R3, and v(t,x):R×Ω → R3 a vector field.
Elastic waves in a solid are described by the Navier equations,

∂2v

∂t2
= µ∆v + (λ+ µ)∇(∇ · v)

= (λ+ 2µ)∇(∇ · v)− µ∇× (∇× v),

(1)
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where the Lamé constants, λ and µ, characterize the material [7, 25]. This equation
is distinguished from the other second-order PDEs of mathematical physics by the fact
that its second-order terms are not merely the Laplacian, or even the Laplace–Beltrami
operator of a nontrivial metric. Since both the independent and the dependent variable
reside in R3, it is possible for them to be “tangled together” in the algebraic structure of
the second-order derivative term. The result is an “exotic” differential operator.

Early in the twentieth century, Hermann Weyl investigated the asymptotic spectral
behavior of this elastic operator [32–33, 2]. He found that for suitable boundary conditions,
all the normal modes could be classified as either longitudinal waves, which can be con-
structed as the gradients of scalar functions (v = ∇φ), or transverse waves, which satisfy
the same divergence condition as electric fields (∇ ·v = 0). Thus the problem decomposes
into two previously solved problems, the scalar and the electromagnetic one.

This observation is a special case of the Hodge decomposition in differential geometry.
Vector fields on a Riemannian manifold are naturally identified with 1-forms. Let d be
the operation of exterior differentiation, mapping k-forms into (k+1)-forms, and δ be the
negative of its adjoint, mapping in the opposite direction. Then the Navier–Lamé operator
(1) is of the form B1δd + B2dδ for certain constants Bj , with k = 1. Longitudinal and
transverse modes belong to the null-spaces of d and δ, respectively.

In recent years exotic operators of a similar sort have been encountered by physicists
constructing quantum theories of gravity [3, 4, 30]. They are associated with so-called
“ghost” degrees of freedom in theories where the gravitational field obeys fourth-order
equations of motion. For example, Barth and Christensen [3] define an operator F by

Fvα = ∆vα +∇β(∇αvβ)− 2η∇α∇βvβ , (2)

where ∆ is the (Bochner) Laplace–Beltrami operator and ∇ the covariant derivative rela-
tive to a semi-Riemannian metric on a four-dimensional manifold; η is a parameter formed
out of the coupling constants of the gravitational theory. Commutation of derivatives in
the middle term shows F to be a curved-space generalization of the Navier–Lamé operator
(1), plus a zeroth-order term built out of the curvature tensor of the manifold. Operators
of this type, acting on k-forms, have been called generalized Ahlfors Laplacians [6]. Some
applications of them within differential geometry are cited in [21].

Exotic second-order terms interfere with the standard methods of calculating asymp-
totic expansions of Green functions, effective Lagrangians, and so on. These are central
tools of the quantum gravity theorists (and of mathematicians studying index theorems or
inverse problems, and of physicists studying atomic nuclei or the thermodynamics of small
grains of material). The general setting (restricted to the second-order case, however) is
an operator

H = Aµν(x)∇µ∇ν +Bµ(x)∇µ + C(x) (3)

acting on sections of a vector bundle over a [semi-]Riemannian manifold M with metric
tensor gµν . (Here x ∈ M is the independent variable, and the summation convention
over repeated tensor indices is in force.) Locally each coefficient Aµν , Bµ, or C can be
represented as a matrix (with respect to a local basis for the fiber space at x of the bundle).
In nonexotic operators (which have come to be called “minimal” operators in the physics
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literature) Aµν is proportional to gµν times the identity matrix, or [Aµν ]ab = const. gµνδab .
For the simplest exotic operators, such as (1) and (2), the bundle is the tangent (or
cotangent) bundle of M , and

[Aµν ]βα = C1 g
µνδβα + C2

1
2

(

gµβδνα + gνβδµα
)

; (4)

the last term “tangles” directions in the bundle with directions in the manifold, producing
the distinctive “grad div” structure.

Three calculational methods. Let K(t, x, y) be the integral kernel of the operator
e−tH — equivalently, the Green function solving the initial value problem for the “heat
equation” ∂v/∂t = −Hv. (For greater precision, suppose that the differential expression
H described earlier is formally self-adjoint, and understand H in the present discussion to
be any self-adjoint realization of it.) It is well known that as t ↓ 0 the diagonal value of
the heat kernel has an asymptotic expansion of the form

K(t, x, x) ∼ (4πt)−m/2
∞
∑

n=0

tnan(x). (5)

This is true for exotic operators as well as minimal ones [22, 31]. (Here m is the dimension
of the base manifold M . Note that K and an are matrix-valued (sections of the bundle
of endomorphisms of the fiber bundle).) From (5) many other expansions of interest
can be derived. (This “local” expansion merely scratches the surface of the geometrical
information contained in the asymptotics of Green functions and spectra. Much more
delicate analysis is needed to extract the effects of boundaries, closed geodesics, etc.; those
matters are beyond the scope of this presentation.)

For nonexotic second-order operators, (5) has an off-diagonal generalization,

K(t, x, y) ∼ e−d(x,y)2/4t(4πt)−m/2
∞
∑

n=0

tnan(x, y), (6)

where d is the semi-Riemannian geodesic distance function. Substitution into the dif-
ferential equation defining K then yields recursion relations that can be solved (labori-
ously) for the an [e.g., 28, 9]. (This process is known in the physics literature as the
Schwinger–DeWitt expansion. In mathematics the series is associated with Hadamard
and Minakshisundaram.) However, for fourth-order operators [26, 8] and exotic second-
order operators such a simple factorization does not exist, and this classical method does
not provide a recursive algorithm.

A second approach to finding the an(x), or at least the integrals of their traces over
M , is some variant of this: At each order n, an must be a linear combination of a finite
list of allowable invariant objects built from the coefficient tensors in H, the curvature
tensor, etc.; the problem is to determine its numerical coefficients. Certain relations among
the coefficients can be deduced from general principles, such as how the heat kernel of
an operator on a product manifold is related to the heat kernels of the factors. Other
relations can be found by looking at special cases (e.g., spheres) for which the answer can
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be calculated easily. With luck one can compile enough information to fix the coefficients
uniquely. This strategy was employed in the famous paper of McKean and Singer [27] and
has been extensively developed by Peter Gilkey [e.g., 19]. Its great advantage is that, when
it works, it provides results very efficiently, rendering pages of tedious algebraic calculations
unnecessary, while providing some interesting geometrical insights. Its disadvantage is that
it is not an algorithm; to push the method forward to a higher order or a more general
class of operator, additional mathematical creativity is always required.

Gilkey and Branson [21] in this way found some important information about the
integrated trace of the heat kernel of the natural exotic operators on differential forms on
a compact Riemannian manifold without boundary. (On such a manifold (5) is uniformly
valid and can be integrated, giving

∫

M

trH(t, x, x) dx ∼ (4πt)−m/2
∞
∑

n=0

tnan(H)

=
∞
∑

ν

e−tλν ≡ Tr e−tH ,

(7)

an(H) ≡
∫

M

tr an(x) dx, (8)

where the λν are the eigenvalues of H.) In the role of H consider

D = a2dδ + b2δd (9)

operating on k-forms (C∞(Λk(M))). If a = b, D is proportional to the DeRham Laplacian
on forms,

∆k = dδ + δd on C∞(Λk), (10)

which is a nonexotic operator. The an(∆j) for 0 ≤ j ≤ m may thus be regarded as
“known”. (In fact, −∆j differs only by a zeroth-order term — the Weitzenböck endomor-
phism — from the Bochner Laplacian, ∆ ≡ gµν∇µ∇ν , and an(x) for such an operator has
been determined up through n = 4 [1]. Formulas for a0(∆j) and a1(∆j) are provided in
Theorem 1.1 of [21].) As previously remarked, the Hodge decomposition cuts k-forms into
“longitudinal” and “transverse” parts; D effectively acts on these two spaces separately,
and hence a “telescoping” calculation [6, 21] expresses the trace of e−tD in terms of the
traces of e−t∆j for j ≤ k, in a reminiscence of Weyl’s classic treatment of the elasticity
problem.

Theorem 1. With the definitions (7) [or (8)], (9), and (10), one has

an(D) = b2n−man(∆k) +
(

b2n−m − a2n−m
)

∑

j<k

(−1)k−jan(∆j). (11)

An interesting broader class of exotic operators (including (2), for instance) comprises
those of the form

H = a2dδ + b2δd−E(x), (12)

where E is a zeroth-order operator (a matrix-valued function). In [21], a0(H) and a1(H)
were determined for such operators. (See [6] for an extension to manifolds with boundary.)
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Theorem 2. For the operator (12) on k-forms, one has (in terms of the quantities in
Theorem 1)

a0(H) = a0(D), (13)

a1(H) = a1(D) +
a0(D)

(

m
k

) ∫

M
1 dx

∫

M

trE(x) dx. (14)

(The integral in the denominator in (14) is simply the volume of M , which appears as a
factor in a0(D).)

Proof: The only invariants eligible to appear in a1 are the curvature scalar R (already
contained in a1(D)) and trE. (Any lingering doubts about this can be settled by examining
the structure of the pseudodifferential calculation presented below.) Therefore, it suffices
to determine the coefficient of the trace term by considering the case E = identity operator.
For that case we have in (7)

Tr e−tH = et Tr e−tD

and hence
a0(H) + ta1(H) + · · · = a0(D) + t[a1(D) + a0(D)] + · · · . (15)

For the identity we also have

trE = dimΛk(M) =

(

m

k

)

,

so the O(t) part of (15) can be written in the generic form (14).

This argument does not generalize in any obvious way to give an(H) for n ≥ 2.
(For example, a2(H) contains both tr(E2) and (trE)2 (not to mention terms bilinear in
E and in curvature), and these are not separated by the identity operator.) Moreover,
formulas for the global quantities an(H) do not give complete information about the local
quantities an(x). For one thing, any exact divergence, such as ∆0R, integrates to zero. For
another, [a1(x)]

α
β may contain both terms proportional to [E(x)]αβ and terms proportional

to trE(x) δαβ , and these are no longer independent after the trace is taken in (8) and (14).
(Traces of the coefficient tensors of H do not appear in the untraced an(x) for ordinary
operators H, but if H is exotic, they do.)

A third way to calculate an(x) is based on the calculus of pseudodifferential operators
[31, 22, 18, 34, 30, 16, 23, 24]. It has broader validity than the two traditional methods;
it offers in principle a complete solution of the problem for operators of the class (12).
(For more general exotic (3) or higher-order operators, integrals may be encountered that
cannot be evaluated in closed form.) Unfortunately, it is much less efficient than the other
methods. An attack upon its computational complexity is the main subject of the present
work.

The symbol. In the intrinsic pseudodifferential calculus [5, 34, 11, 16] each covariant
derivative, ∇, in an operator such as (3) is represented by a Fourier (cotangent bundle)
variable, iξ. Thus the operator on C∞(Λ1)

H0 ≡ −∆− c

2

(

∇β∇α +∇α∇β

)

(∆ ≡ gµν∇µ∇ν) (16)
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has the intrinsic symbol
Sy(H0) = |ξ|2 + c ξ ⊗ ξ. (17)

By definition, an exotic operator is one with nonscalar principal symbol; that is, the terms
in the symbol of highest degree in ξ are not just a multiple of the identity matrix. We may
think of H0 as operating either on vector fields or on one-forms; to match up with physics
literature, I shall consider vector fields. Then the coefficient tensor in (16) and (17) is

[Aµν ]βα = −gµνδβα − c

2

(

gµβδνα + gνβδµα
)

. (18)

Here all the indices are Greek, since they refer to the same vector bundle (or its dual);
their place of origin in the symbol is momentarily preserved by the distinction between the
beginning and middle of the alphabet.

We consider the class of operators

H = b2H0 + V (x). (19)

(Here b2 and c are constants, obeying sign constraints to be discussed presently, and V
is a C∞ endomorphism-valued function, called the potential in analogy with quantum
mechanics.) Equivalently, H is of the form (12) with

−Eβ
α = V β

α − b2
(

1 +
c

2

)

Rβ
α (20)

and

a2 = b2(c+ 1), c =
a2 − b2

b2
. (21)

The operator can be parametrized by a and b, to exploit the Hodge decomposition, or
by b and c, so that c is the magnitude of the exotic term and b is merely a scale factor.
(In [24], V is called X and c is called −a. The terms in (20) proportional to the Ricci
tensor Rβ

α are the Weitzenböck operator for k = 1 and a similar contribution from the
desymmetrization of the exotic term in (16).)

From the second-order derivative terms one reads off the principal symbol of H as

+b2(|ξ|2 + c ξ ⊗ ξ) = b2|ξ|2 + (a2 − b2) ξ ⊗ ξ

= a2extξintξ + b2intξextξ ,
(22)

where int and ext are the operators of interior and exterior multiplication on forms. (Here
ξ ⊗ ξ has the matrix

ξβξα

in a conventional local basis.) Under the assumption that the metric is positive definite
and b2 > 0, the condition that both eigenvalues be nonnegative, so that the heat kernel
exists, is

c ≥ −1, or a2 ≥ 0. (23)
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(If b2 and a2 are replaced by negative numbers, we have a heat operator e+tP , which still
corresponds to c ≥ −1. The results of a calculation, which are basically combinatorial
rather than analytic, can be formally continued to other cases, such as indefinite metric.)
By convention, b > 0 and a ≥ 0.

In the calculation a major role is played by the eigenvalues and eigenprojections of
the matrix (22). They are

λ1 = a2|ξ|2 = b2(c+ 1)|ξ|2, P1 =
ξ ⊗ ξ

|ξ|2 (along ξ), (24a)

λ2 = b2|ξ|2, P2 =
|ξ|2 − ξ ⊗ ξ

|ξ|2 (⊥ to ξ). (24b)

In the notation of [16] we have

b0(λ) ≡ [Sy(b2H0)− λ]−1 = −
2

∑

j=1

Pj

λ− λj
. (25)

The first step in calculating the heat kernel of H is to find the symbol of the resolvent
operator, (H − λ)−1, following [34] and [16]. For background reading on the resolvent
symbol and the heat kernel, I highly recommend the expositions of Gilkey [17, 18, 20].
(They, however, deal with the conventional pseudodifferential calculus, where ξ is a literal
Fourier variable corresponding to conventional partial differentiation. The basic formulas
of that approach are simpler than those of the intrinsic formalism, but extra work is needed
at the end to express the results in coordinate-independent geometrical form.) The series
of conference reports [14–15] provides a brief introduction to and summary of [16].

Theorem 3. The intrinsic symbol of the resolvent parametrix of an elliptic linear differ-
ential operator has an asymptotic expansion

Sy[(H − λ)−1] ∼
∑

s≥0

bs(x, ξ, λ), (26)

where b0 , as in (25), is the local resolvent of the principal symbol, and the higher bs
are given by an explicit formula [15, 16] involving very complicated index contractions and
summations over multiindices. The formula for b2 contains 40 terms for a generic operator,
but only 5 in the present case (19):

b2 =− b0V b0

− 4b0A
αµb0A

βν(∇µ∇νI)b0 ξαξβ

− 2b0A
αµb0A

νρ(∇µ∇ν∇ρΦ
β)b0 ξαξβ (27)

− 2b0A
µνb0A

αρ(∇µ∇ν∇ρΦ
β)b0 ξαξβ

− 8b0A
αµb0A

βνb0A
γρ(∇(µ∇ν)∇ρΦ

δ)b0 ξαξβξγξδ .
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[Here a matrix multiplication is implied, and hence the fiber-bundle indices, including the
last two indices in (18), are suppressed. I is the parallel transport operator in the tangent
bundle, called τE in [16]. See (A.11–13) of [24]; their W will be 0 for us. Φ(x, y) is the
tangent vector to the geodesic joining x and y (see [16], Remark 2.5). The important thing
is that in the present case all the covariant derivatives of I and Φ, evaluated at y = x as
tacitly implied in (27), can be recursively calculated in terms of the Riemann tensor [9,
10, 12].] More generally, a term in bs has the form

(coefficient) b0TUb0TU−1 · · · b0T1b0 ξ
⊗(2U−s), (28)

where the Tu are tensors built out of A, V , Φ, and I and their covariant derivatives, with
indices absorbing the ξ factors by contraction. (Each T is linear in (A, V ).) U ranges from
U0 ≡ −[−s/2] = ⌈s/2⌉ to 2s.

In particular, 1 ≤ U ≤ 4 for s = 2 (and in fact U = 4 does not occur for our special
operator), and 2 ≤ U ≤ 8 for s = 4. Note also that for our operator, the covariant
derivatives of A vanish.

To obtain the diagonal value of the heat kernel we follow Widom [34], pp. 59–61.

Theorem 4. In an orthonormal frame at x we have

K(t, x, x) ∼
∞
∑

s=0

Ks(x), (29)

Ks(x) = (2π)−m

∫

Rm

dmξ

(−1

2πi

)
∫

Γ

dλ e−tλbs(x, ξ, λ), (30)

where Γ surrounds λ1 and λ2 in the positive sense. Ks will be 0 for s odd. [In the contrary
case, K2n equals (4πt)−m/2 tnan in our earlier notation (5).] Thus the contribution of the
term (28) is

t(s−m)/2(coefficient)(−1)U (2π)−m

∫

dmη

2
∑

i0=1

· · ·
2

∑

iU=1

PiUTU · · ·T1Pi0

⊗ η⊗(2U−s) 1

2πi

∫

Γ

dµ e−µ(µ− µ1)
−M1(µ− µ2)

−M2 ,

(31)

where
Mj ≡ cardinality of {iι: iι = j} (M1 +M2 = U + 1), (32)

µ1 ≡ a2|η|2, µ2 = b2|η|2. (33)

To get to (31) one makes the substitutions

η = t1/2ξ, µ = tλ

and renames tΓ as Γ. Whenever Tu equals A, another sum from 1 to 2 can be introduced
into (31), corresponding to the two terms in (18); furthermore, P2 splits into two terms
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(24b), so the i sums are effectively over three values. This implies that each term in b2n
gives rise to a rather large number of terms in an — namely, 3U+12U−v, where v is the
number of occurrences of the potential V in the term (28). Thus from (27) for b2 we will
get (in a1) 9 terms involving V and 108 + 108 + 108 + 648 = 972 other terms, which are
all linear in the Ricci tensor. The number of terms in a2 is over a million! These terms
are highly redundant, in the senses that many of them are manifestly proportional, quite a
few turn out to be zero, and they are all linear combinations of a small number of linearly
independent objects. For example, a1 must simplify to a sum of 5 terms, proportional to
V , its transpose, its trace (times the identity), the Ricci tensor, and its trace (the curvature
scalar R).

In what follows I shall demonstrate that all the integrations in (31) can be performed in
closed form, so that in principle an(x) has been expressed in terms of elementary functions
(and local, polynomial functionals of the coefficient tensors). Furthermore, I shall show
that modern computer technology makes practical the actual calculation of a1 and probably
a2 by this method.

Integrals. In evaluating formula (31), one encounters three kinds of integrals:

1. Cauchy integrals over the spectral parameter, µ.

2. Gaussian integrals over the radial coordinate in Fourier space, |η|.
3. Angular integrals over the unit sphere in Fourier space.

Lemma. Define

FM1M2
(µ1, µ2) ≡

1

2πi

∫

Γ

f(λ) (λ− µ1)
−M1(λ− µ2)

−M2 dλ, (34)

where f , µ1 6= µ2, and Γ satisfy the conditions for Cauchy’s integral formula. Then if M1

and M2 are both positive integers,

FM1M2
(µ1, µ2) =

M1−1
∑

J=0

(−1)J (M2 + J − 1)!

(M2 − 1)! (M1 − J − 1)! J !
f (M1−1−J)(µ1)(µ1 − µ2)

−M2−J

+

M2−1
∑

J=0

(−1)J (M1 + J − 1)!

(M1 − 1)! (M2 − J − 1)! J !
f (M2−1−J)(µ2)(µ2 − µ1)

−M1−J .

(35)

If one of the integers is 0, the formula degenerates to

FM10(µ1, µ2) =
f (M1−1)(µ1)

(M1 − 1)!
, F0M2

(µ1, µ2) =
f (M2−1)(µ2)

(M2 − 1)!
. (36)

Proof: Cauchy’s formula is

1

2πi

∫

Γ

g(λ)

(λ− ζ)n+1
dλ =

1

n!
g(n)(ζ). (37)
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From this, (36) follows immediately. To get (35) we need to calculate

(

d

dλ

)M1−1 [
f(λ)

(λ− µ2)
M2

]

=

M1−1
∑

J=0

(

M1 − 1

J

)

f (M1−1−J)(λ)

[

(M2 + J − 1)!

(M2 − 1)!
(−1)J(λ− µ2)

−M2−J

]

and the analogue with 1 ↔ 2. Then (35) follows quickly.

In (31) we have a special case of the foregoing.

Theorem 5. If f(λ) = e−λ and

µ1 = a2|η|2, µ2 = b2|η|2, c ≡ a2 − b2

b2
6= 0, (38)

then

FM1M2
(µ1, µ2) =

M1−1
∑

J=0

(−1)M1−1(M2 + J − 1)!

(M2 − 1)! (M1 − J − 1)! J !
(b2c)−M2−J |η|−2(M2+J)e−a2|η|2

−
M2−1
∑

J=0

(−1)M2−M1−J (M1 + J − 1)!

(M1 − 1)! (M2 − J − 1)! J !
(b2c)−M1−J |η|−2(M1+J)e−b2|η|2 ,

(39)

FM10(µ1, µ2) =
(−1)M1−1

(M1 − 1)!
e−a2|η|2 , F0M2

(µ1, µ2) =
(−1)M2−1

(M2 − 1)!
e−b2|η|2 . (40)

Contrary to appearance, the functions in (39) are guaranteed to be nonsingular as
η → 0.

Henceforth we shall write FM1M2
(a, b) instead of FM1M2

(µ1, µ2) and r in place of |η|.
Examples:

F11(a, b) =
e−a2r2 − e−b2r2

b2cr2
. (41a)

F31(a, b) =
1

2

e−a2r2

b2cr2
+

e−a2r2

b4c2r4
+

e−a2r2

b6c3r6
− e−b2r2

b6c3r6
. (41b)

We shall dispose of the angular integrals quickly, since a similar problem has been
discussed in depth in the appendix of [8].

Theorem 6. Consider an integral of the form

IF ≡
∫

Rm

dmη F (|η|) ηα, (42)
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where α is a multiindex, corresponding to a string of tensor indices µ1, µ2, . . . , µ|α| (un-
ordered, but not necessarily distinct). IF equals 0 unless all components of α are even. If
α = 2β, then

IF =
IF

(2|β| − 1)!!
g2β , (43)

where

IF ≡
∫

Rm

dmη F (|η|) ηm2|β|, (44)

and
g2β ≡ gµ

1
µ
2
gµ

3
µ
4
. . .+ gµ

1
µ
3
gµ

2
µ
4
. . .+ · · · (45)

involves a sum over the (2|β| − 1)!! essentially distinct permutations of the indices. (As a
factor in a scalar integrand, this tensor produces a contraction over all possible pairings of
the indices in α.) Furthermore,

IF = πm/2 21−|β|(2|β| − 1)!!

Γ(m2 + |β|)

∫ ∞

0

rm+2|β|−1F (r) dr. (46)

(The numerical factors in (46) are the product of
∫ π

0
cos2|β| θ sinm−2 θ dθ and the volume

of the unit (m− 2)-sphere.)

We turn to the final step of integration: Theorems 5 and 6 reduce (31) to integrals of
the form

∫ ∞

0

rm−1+2U−s FM1M2
(r) dr. (47)

All such integrals can be evaluated by the formula

∫ ∞

0

e−qr2rp dr =
1

2
q−(p+1)/2 Γ

(

p+ 1

2

)

(48)

(found by the substitution z = qr2). However, there is a subtlety here. Although the
complete integral (47) converges, the individual terms may diverge at r = 0; this shows up
in poles of the Γ function. This problem can be handled by “dimensional regularization”:
The integral is an analytic function of m, hence obtainable by analytic continuation of the
formula for it provided by (48) from values of m so large that the term integrals converge;
that formula will have a removable singularity. As p approaches the desired value in each
term, the poles of the Γ functions must cancel, and the finite remainder can be extracted
at the cost of some tedious algebra. In practice, one can evaluate the integrals formally
by (48), treating m as a continuous variable, and then take the limit as m approaches an
integer.

Examples: (The arguments a, b of FM1M2
are suppressed.)

∫ ∞

0

rm−1F20(r) dr = − 1

2
a−mΓ

(m

2

)

. (49a)
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∫ ∞

0

rm−1F11(r) dr =
1

2b2c

(

a2−m − b2−m
)

Γ
(m

2
− 1

)

. (49b)

When m = 2, the second of these formulas requires taking a limit:

∫ ∞

0

r F11(r) dr =
1

b2c
(ln b− ln a). (50)

Gusynin et al. [24] evaluated the Cauchy, and the resulting radial, integrals in terms
of hypergeometric functions. In this way they succeeded in calculating a0 and a1 by hand.
From the foregoing it is clear that all hypergeometric functions appearing in their results
can be expressed in elementary functions, perhaps at the cost of less compact formulas.

The leading term. In contrast to the usual case, for an exotic operator even a0 is
nontrivial. Evaluating (31) with (28) collapsed to b0 , one gets

a0(x) = b−m +
a−m − b−m

m

=
1

bmm

[

m− 1 + (c+ 1)−m/2
]

.

(51)

(An identity matrix is implicit here.) When a = b (or c = 0) this reduces to the well
known “minimal” result, a0 = b−m (that is, K0 = (4πb2t)−m/2). When we trace (51) and
integrate it over the manifold, we get

a0(H) =
[

mb−m + a−m − b−m
]

∫

M

1 dx, (52)

in accordance with Theorems 1 and 2.

Computerization. In pursuit of a1 and a2 a sequence of computer programs has been
written. I have found, here as elsewhere [13], that “homegrown” programs are most effec-
tive in generating the large number of terms in asymptotic calculations, but that commer-
cial, general-purpose computer algebra programs [35, 29] are essential for combining like
terms and simplifying the output.

1. To implement the result of [16], I wrote a program in C to list the terms in each
order, bs , of the resolvent symbol. This program prints the values of the multiindices
characterizing each term (28) and calculates the numerical coefficient. This program is
quite general: for example, it could be used to generate the terms in the resolvent of a
fourth-order nonexotic operator [23], and it is applicable to the conventional as well as the
intrinsic pseudodifferential calculus.

2. That program acts as the basic engine in another program that lists the terms in
the heat kernel of H (see (31) and following discussion). The new program, implemented
as a subroutine of the other one and constantly revised as the need arises, calculates the
new numerical factors accumulated in (31), (43), and (46) and outputs each term in a
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form suitable as input for MathTensor. (It is here that the structure of tensor contraction,
described verbally in [16] and glossed over in Theorem 3, must be concretely implemented.)

3. A Mathematica package was written to evaluate the Cauchy and radial integrals,
following (34), (39), (40), (47), and (48).

4. An additional Mathematica input file is needed to define for MathTensor the
various tensors appearing in the Tu of (31), to simplify Γ functions, etc. For large |β|,
creating the expression (45) is itself a nontrivial programming task, and digesting it the
most time-consuming part of the later computation.

5. Mathematica/MathTensor is used interactively to work the various contributions
to an into a usable final form.

Since b in (19) enters each category of terms only as a scale factor, it is convenient to
set b = 1 in the calculation; the appropriate power of b is easily restored at the end. The
results are most elegantly stated as rational functions in c and

ã ≡ a/b =
√
c+ 1 . (53)

With this technology, the calculation of the terms in a1 involving the potential V is
fairly simple. We have

a
(V )
1 (x)βα =

ãm[c(2−m) + 4]− c(m+ 2)− 4

bmãmcm(m2 − 4)
[Vα

β + V µ
µδ

β
α]

+
−ãm[c(m3 − 2m2 − 3m+ 6) + 4(m+ 1)] + 3c(m+ 2) + 4(m+ 1)

bmãmcm(m2 − 4)
V β

α .

(54)
(Even if H is formally self-adjoint, forcing V to be Hermitian, V may still be a complex
matrix; hence V and its transpose are independent objects.) Taking the trace yields

a
(V )
1 (x)µµ = − m− 1 + ã−m

bmm
V µ

µ (55)

in agreement with [21] (cf. (14) and (51)).

The curvature terms in a1 proved to be much more involved, and the computation
was barely finished in time for this conference. I find

a
(R)
1 (x)βα =

ãm[3c2(m− 2) + c(m3 −m2 − 24)− 24]

+ c2(m2 + 5m+ 6) + c(m2 + 8m+ 24) + 24

6bm−2ãmcm(m2 − 4)
Rδβα

+

ãm[3c2(m3 − 2m2 − 2m+ 4) + 2c(−5m2 + 14m+ 12) + 24m]

− 2c2(m2 + 5m+ 6)− 2c(m2 + 14m+ 12)− 24m

6bm−2ãmcm(m2 − 4)
Rβ

α .

(56)
The trace is

a
(R)
1 (x)µµ =

ãm[3c(m− 1) +m2 −m− 6] + c(m+ 3) +m+ 6

6bm−2ãmm
R. (57)
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However, the result is much simpler for the operator D = a2dδ + b2δd defined in (9)
(the operator that is simplest and most natural from the point of view of the geometer, as
opposed to the Fourier analyst). From (20), (54), and (56) one finds

a
(D)
1 (x)βα =

ãm(m− 3) + c+ 1

6bm−2ãm(m− 2)
Rδβα

+
ãm(−3m+ 7)− c− 1

3bm−2ãm(m− 2)
Rβ

α .

(58)

Its trace is
a
(D)
1 (x)µµ = 1

6
b2−m[m− 7 + ã−m(c+ 1)]R, (59)

which is the prediction of Theorem 1.

Main Theorem. [Formulas (51), (54), (56), and (58) are the main results. The notation
is defined in (5), (16), and (19). Results (51) and (54) agree with [24], where a different but
related method was employed; comparison of (56) with [24] has not yet been completed.]

After debugging, the Mathematica calculation of (56) requires two days of operation of
a Sun 3/60 workstation. (Direct calculation of (57) is about 5 times faster. The execution
time of the preparatory C program is negligible.) An attack on a2 , therefore, will require
either a supercomputer or a more efficient algorithm. Experience gained in this computa-
tion indicates several ways in which greater efficiency can be achieved. In particular, the
many terms that turn out to be zero tend to take more time (individually!) to compute
than do the interesting terms; it is possible to state general principles for discarding some
such terms a priori.

Concluding remarks. This work has provided valuable experience in the use of sym-
bolic computation on problems of this nature. Efficiency is strongly dependent on the
organization of the calculation, in ways that are not always obvious at the start. The
result, and the hoped-for future calculation of a2 , have applications in quantum gravity,
and one may hope that they will be useful in continuum mechanics or pure geometry as
well. The algebraic structure of the formulas is of some interest in its own right: the com-
plicated dependence on the dimension m, the exotic coupling constant c, and the trace and
transpose of the potential V are quite different from the second-order nonexotic case. The
relative simplicity of (58) gives some hope of finding an insight into the nature of an(x) for
general n, generalizing Theorem 1. The most satisfactory outcome of a massive computer
calculation often is a qualitative discovery that renders the calculation itself unnecessary
in hindsight; that has not yet happened here, but one may hope, and keep looking.

Acknowledgments. The computations were done on a Sun 3/60 workstation with Math-
ematica software, both provided by a grant from Sun Microsystems, extended by Wolfram
Research Inc. I am especially grateful to S. M. Christensen and L. Parker. Christensen
posed this problem to me in 1980. He and Parker helped me obtain the computer, and
they developed the software [29] that has proved to be necessary in solving this and similar
problems. Parker provided advice and comfort during the calculation of (56). G. Kennedy
collaborated on the key paper [16]. S. Mock and D. Potts wrote programs enumerating the
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permutations needed to construct g2β . V. P. Gusynin proved in [23–24] that the intrinsic
pseudodifferential calculus can indeed be used to get concrete results. He also caught an
error in [21] before publication. I have learned an immense amount from P. B. Gilkey
in public and private communications, and I am grateful to him and T. P. Branson for
generously including me as a coauthor of [21]. I thank the organizers of this Colloquium
for the opportunity to communicate this research.

Bulletin. Since the Colloquium, T. P. Branson, P. B. Gilkey, and A. Pierzchalski have
announced a calculation of a2(H) for k = 1 by functorial methods, extending Theorems 1
and 2.
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