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1 Reminder of the Phenomena

To establish the setting of this presentation, consider as an example the classic
problem of a scalar field in a box. More precisely, consider a “Casimir slab”
of width L in 4-dimensional space-time, with the energy-momentum tensor
associated with minimal gravitational coupling. With the spatial operator in
the field equation, H = −∇2, several quantities are associated:

1.1 Vacuum energy

In the 1970s considerable attention was directed to defining and calculating
the local density of energy in such situations. 2 It was found that there are
two contributions. First, there is a constant energy density throughout the
space, proportional to L−4. It is variously described as being related to the
finite size of the box, to the discreteness of the spectrum of normal modes, and
to the existence of a closed geodesic (or classical path) of length 2L. This is
the scalar analog of the classic Casimir effect. It persists in a closed universe
without boundary. Second, there is a divergent distribution of energy clinging
to the walls: T00(x) ∝ x−4, when x is the distance to the nearest wall. It
persists in an infinite space with only one wall. We may say that this effect is
caused by the existence of the boundary, the spatial inhomogeneity near the
boundary of the set of mode functions, and the length (2x) of a path that
reflects from the boundary and returns to the observation point. Therefore,
with some exaggeration in the eyes of an experimentalist, we can say: By
observing vacuum energy locally, we can tell how big the world is (L) and how
far we are from its edge (x).
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1.2 The heat kernel expansion

Expanding heat kernels has long been a favorite industry of many, myself
included. For any positive operator H, the heat kernel K(t, x, y) ≡ e−tH(x, y)
is the Green function such that u(x) =

∫
K(t, x, y)f(y) dy solves the initial-

value problem −∂u∂t = Hu, u(0, x) = f(x). It is well known that K has an
asymptotic expansion

K(t, x, x) ∼ (4πt)−m/2
[

1 +
∞∑
n=1

an(x)tn
]
, (1)

(m = spatial dimension) where an(x) is a local functional of the curvature, etc.
(covariant functionals of the coefficient functions in the seond-order differential
operator H) at x. In particular, an is identically zero inside our box (where
H = −∇2). By studying the heat kernel expansion, you will never discover
the Casimir effect!

1.3 Schrödinger and Schwinger–DeWitt kernels

The function U(t, x, y) ≡ e−itH(x, y) is obtained formally by replacing t in
the heat kernel by it. When H is an elliptic operator, a quantum-mechanical
Hamiltonian, U is the propagator that solves the time-dependent Schrödinger
equation. When H is a hyperbolic operator and t a fictitious proper time,
U is the Schwinger–DeWitt kernel used in renormalization of quantum field
theories. The rotation of the t coordinate in Eq. (1) is algebraically trivial, but
the resulting expansion is, in general, invalid if taken literally! This is most
easily seen by letting our space be the half-space R+ , for which the problem
can be solved exactly by the method of images:

U(t, x, y) ∼ (4πit)−1/2
[
ei|x−y|

2/4t − ei|x+y|2/4t
]
. (2)

Passing to the diagonal, we have

U(t, x, x) ∼ (4πit)−1/2
[
1− eix2/t

]
, (3)

and we see that the reflection term is exactly as large as the “main” term, in
blatant contradiction to the alleged asymptotic expansion (1) (which in this
case consists just of the main term and an implied error term vanishing faster
than any power of t). Does this mean that the Schwinger–DeWitt series, to
which so many graduate students have devoted their thesis years, is nothing
but a snare and a delusion? Heaven forbid! The information in that series
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is meaningful when used correctly (for example, in renormalization theory).
In fact, the second term in Eq. (3), although large, is rapidly oscillatory, and
consequently the series is indeed valid in various distributional senses, as I shall
partially explain below.

1.4 The cylinder kernel

The Green function T (t, x, y) ≡ e−t
√
H(x, y) solves the (elliptic) boundary-

value problem ∂2u
∂t2 = Hu, u(0, x) = f(x), u(t, x) → 0 as t → +∞ (i.e.,

in a semi-infinite cylinder with our spatial manifold as its base) by u(x) =∫
T (t, x, y)f(y) dy. The cylinder kernel T shares many of the properties of

vacuum energy (〈T00〉) and the latter’s progenitor, the Wightman two-point
function (W (t, x, y) ≡ 〈φ(t, x)φ(0, y)〉), a Green function for the wave equa-
tion ∂2u

∂t2 = −Hu; however, T is technically simpler in several ways. Its study
therefore deserves our attention, even though it has no direct physical interpre-
tation with t as a time coordinate. For an example we once again consider one
space dimension, where H = − ∂2

∂x2 (so we’re dealing with very classical Green
functions for the two-dimensional Laplace equation). If the spatial manifold is
the entire real line, the kernel is

T0(t, x, y) =
t

π

1
(x− y)2 + t2

, (4)

whereas if the space is R+ , the problem can again be solved by images:

T+(t, x, y) =
t

π

[
1

(x− y)2 + t2
− 1

(x+ y)2 + t2

]
. (5)

Passing to the diagonal and making a Taylor expansion, we get

T+(t, x, x) =
1
πt

[
1− t2

(2x)2
+ · · ·

]
. (6)

Thus we see that the asymptotic expansion of the cylinder kernel does probe
x (and also L, in a finite universe), as the vacuum energy does. On the other
hand, 〈T00〉 and W share some of the delicate analytical complications of U ,
whereas T is about as well-behaved as K.

1.5 Summary and synopsis

The four Green functions T , U , K, W demonstrate two distinctions (Table 1):
that between local and global dependence on the geometry, and that between
pointwise and distributional validity of their asymptotic expansions (and, as
we’ll see, of their eigenfunction expansions also).
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Table 1: Asymptotic properties of Green functions.

Pointwise Distributional

Local K U

Global T W

The main points I wish to make are:

• As already remarked, the small-t expansion of T contains nonlocal infor-
mation not present in the corresponding expansion of K.

• Nevertheless, both these expansions are determined by the high-energy
asymptotic behavior of the density of states, or, more generally, the spec-
tral measures, of the operator H.

• The detailed relationships among all these asymptotic developments are,
at root, not a matter of quantum field theory, nor even of partial dif-
ferential equations or operators in Hilbert space. They are instances of
some classical theory on the summability of infinite series and integrals,
developed circa 1915. 9,10

2 Spectral Densities

The Green functions have spectral expansions in terms of the eigenfunctions
of H. If the manifold is R and H = − ∂2

∂x2 , the heat, cylinder, and Wightman
kernels are

K0(t, x, y) =
1

2π

∫ ∞
−∞

dk e−tk
2
eikxe−iky , (7)

T0(t, x, y) =
1

2π

∫ ∞
−∞

dk e−t|k| eikxe−iky, (8)

W0(t, x, y) =
1

4π

∫ ∞
−∞

dk
e−it|k|

|k| eikxe−iky . (9)

On the other hand, we can vary the space, or the operator; for instance, the
heat kernel for R+ is

K+(t, x, y) =
2
π

∫ ∞
0

dω e−tω
2

sinωx sinωy, (10)
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while that for a box of length L is

KL(t, x, y) =
2
L

∞∑
n=1

e−t(nπ/L)2
sin

nπx

L
sin

nπy

L

=
2
L

∫ ∞
0

dω e−tω
2
∞∑
n=1

δ
(
ω − nπ

L

)
sinωx sinωy. (11)

In general, each object can be written in the schematic form∫ ∞
0

g(tω) dE(ω, x, y), (12)

where dE is integration with respect to the spectral measure of a given H (on
a given manifold) and g is the kernel of a certain integral transform (Laplace,
Fourier, etc.) defining the Green function in question. (To fit some of the ker-
nels into the mold (12), it is necessary to redefine some variables, for example
replacing t by

√
t.)

Spectral measures or densities are in a sense more fundamental and more
directly relevant than Green functions, since all functions of H can be ex-
pressed immediately in terms of them. However, the kernels (especially K
and T ) are more accessible to calculation and analytical investigation.

3 Riesz–Cesàro Means

Eq. (12) is an instance of the general structure

f(λ) ≡
∫ λ

0

a(σ) dµ(σ), (13)

where µ is some measure, such as E(σ, x, y). (For a totally continuous spec-
trum, dµ(σ) equals µ′(σ) dσ where µ′ is a function, which we call the spectral
density. For a totally discrete spectrum, dµ(σ) is of the form

∑
n cnδ(σ−σn) dσ.

If E(σ, x, x) is integrated over a compact manifold, then the corresponding
µ′(σ) becomes the density of states, and µ(λ) becomes the counting function
— the number of eigenvalues less than λ.) If a = 1, then f is µ itself. If
a = g(tσ) and λ→∞, then f is one of the kernels previously discussed.

Derivatives of negative order of f are defined as iterated indefinite inte-
grals, which can be represented as single integrals:

∂−αλ f(λ) ≡
∫ λ

0

dσ1 · · ·
∫ σα−1

0

dσα f(σα)

=
1
α!

∫ λ

0

(λ− σ)α df(σ). (14)
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The Riesz–Cesàro means of f are defined from these by a change of normal-
ization:

Rαλf(λ) ≡ α!λ−α∂−αλ f(λ) =
∫ λ

0

(
1− σ

λ

)α
df(σ). (15)

If the limit of f(λ) as λ approaches ∞ exists, then Rαλf(λ) also approaches
that limit (though perhaps more slowly). On the other hand, Rαλf(λ) may
converge at infinity when f(λ) does not. In that case, Rαλf(∞) serves to define
f(∞). This extended notion of summability of an infinite integral generalizes
the summation of classically divergent Fourier series by Cesàro means (the
averages of the first N partial sums).

4 Riesz Means with Respect to Different Variables

To this point our notation has been rather loose, so as to discuss all the various
kernels in a unified, schematic framework without propounding cumbersome
definitions. Now it is necessary to tighten up. Henceforth λ will denote the
eigenvalue parameter of our second-order elliptic differential operatorH, and ω
will denote its square root, the frequency parameter. (On the real line, where
the prototype eigenfunction is (2π)−1/2eikx, we have λ = k2 and ω = |k|.)
Thus the basic relations are

λ = ω2, dλ = 2ω dω. (16)

This seeming triviality of calculus has surprising impact. For α > 0 the
Riesz means Rαλµ and Rαωµ are not the same things. In fact, one can calculate
Rαλµ in terms of the Rβωµ with β ≤ α, and vice versa. 9,11 The striking result
is that the λ → ∞ behavior of the Rλ(µ) is completely determined by that of
the Rω(µ), but the converse is false; the asymptotics of the Rω(µ) depend on
integrals of the Rλ(µ) over all λ, not just on their asymptotic values. That
is, in the passage from λ to ω, new terms in the asymptotic development of
Rαωµ arise as undeterminable constants of integration; in going from ω to λ,
there are “magical cancellations” that cause these terms to disappear from the
asymptotics of Rαλµ.

In more detail: The rigorous asymptotic approximation

Rαλµ(λ) =
α∑
s=0

aαsλ
(m−s)/2 +O(λ(m−α−1)/2) (17)

can be shown, as can the corresponding asymptotic approximation

Rαωµ(ω) =
α∑
s=0

cαsω
m−s +

α∑
s=m+1
s−m odd

dαsω
m−s lnω +O(ωm−α−1 lnω), (18)
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where

• cαs = constant× aαs if s ≤ m or s−m is even;

• cαs is undetermined by aαs if s > m and s−m is odd;

• dαs = constant× aαs if s > m and s−m is odd.

The constants are combinatorial structures (involving mostly gamma func-
tions) whose detailed form is not important now.

5 Some Conclusions

We can now relate these facts to the spectral theory and physics discussed
earlier.

1. From the foregoing it is clear that the ω expansion coefficients of µ
(Eq. (18)) contain more information than the λ expansion coefficients
(Eq. (17)). In the application to quantum field theory it turns out that
the new data are “global” and the old ones are “local”. Indeed, the λ
coefficients are in one-to-one correspondence with the terms in the heat
kernel expansion, while the whole list of ω coefficients correspond to the
terms in the expansion of the cylinder kernel (see below).

2. The Riesz means of µ(λ) ≡ E(λ, x, y) give rigorous meaning to the formal
high-frequency expansions obtained by formally inverting the asymp-
totics of K and T (i.e., applying the inverse of the appropriate inte-
gral transform (12) to the asymptotic expansion term-by-term). The
existence of discrete spectra (which makes the exact µ a step function)
shows that those high-frequency expansions cannot be literally asymp-
totic. That they nevertheless can be given a precise meaning in terms of
some averaging procedure was pointed out by Brownell 1 in the ’50s; the
connection with Riesz means was drawn by Hörmander. 11

3. Similarly, the concepts of Riesz–Cesàro summation tighten up the con-
vergence of the spectral expansions of U and W , and also the t → 0
asymptotics of those distributions.
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6 Kernel Expansions from Riesz Means

When f and µ are related by Eq. (13), a Riesz mean of f can be expressed in
terms of the corresponding Riesz mean of µ:

Rαλf(λ) = a(λ)Rαλµ(λ)

+ λ−α
α+1∑
j=1

(−1)j

(j − 1)!

(
α+ 1
j

)∫ λ

0

dσ (λ− σ)j−1σα∂jσa(σ)Rασµ(σ). (19)

In the case of Eq. (12), Eq. (19) relates the asymptotics of the spectrum to the
asymptotics of the kernels. Eq. (17) corresponds to

K(t) ≡
∫ ∞

0

e−λt dµ(λ) ∼
∞∑
s=0

bst
(−m+s)/2, (20)

where

bs =
Γ((m+ s)/2 + 1)

Γ(s+ 1)
ass . (21)

Eq. (18) corresponds to

T (t) ≡
∫ ∞

0

e−ωt dµ ∼
∞∑
s=0

est
−m+s +

∞∑
s=m+1
s−m odd

fst
−m+s ln t, (22)

where es and fs are related to css and dss in much the same way as bs is related
to ass . 7 (One can concentrate on the spectral coefficients with α = s, because
those with α 6= s contain no additional information.)

One has to wonder whether there is something more profound and general
in the Riesz–Hardy theory of spectral asymptotics with respect to different
variables, waiting to be discovered and applied. We have concentrated on the
counterpoint of λ1/2 versus λ, where the extra data associated with the for-
mer is geometrically global in a spectral problem, that associated with the
latter strictly local. This geometrical significance, of course, we could not
have learned from Hardy and Riesz; it has to be observed in the application.
The entire development (with different exponents in the series) could be re-
peated for λ versus λ2 and applied to the spectral asymptotics of H versus H2

(a fourth-order differential operator). Examination of the formulas of Gilkey 8

for the heat kernel expansion of a fourth-order operator verify that, indeed,
there are terms in the asymptotics of H that disappear from the asymptotics
of H2 (because the combinatorial coefficients multiplying them vanish). In this
case, however, both series are totally local, so there does not appear to be a
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qualitative difference between the two sets of spectral invariants. Is the effect,
therefore, a mere curiosity in that case, or does it have a deeper significance?
In the other direction, one can expect that the Riesz means with respect to
λ1/3 (and hence, the Green function for the operator e−tH

1/3
) contain new

information different from that contained in T ; and that λ1/6 subsumes them
both; and so on. Should we care about this new spectral data? Finally, as
a wild speculation, might the investigation of these Riesz means with respect
to arbitrarily extreme fractional powers of the eigenparameter provide an easy
way to get access to at least a part of the detailed spectral information that
is encoded in the lengths of the closed geodesics (or periodic classical orbits)
of H ?

7 Distributional/Cesàro Theory of Spectral Expansions

Finally, I shall summarize some more technical mathematics surrounding the
Green function integrals (12): 4

• The locality of the asymptotics of G hinges on the regularity of g at 0.
For example, the different behavior ofK and T arises from the distinction
between e−x (which has a Taylor series at 0) and e−

√
x (which does not).

• The pointwise versus distributional/Cesáro validity of the asymptotics
of G hinges on the behavior of g at infinity. Thus, the difference between
K and U arises from the contrast between e−x and e−ix.

• The large-λ asymptotics of E is valid (and local) in a distributional/Cesà-
ro sense (but usually not pointwise).

It remains to explain the term “distributional/Cesàro”. The point is that
Riesz–Cesàro limits (defined after Eq. (15)) are equivalent to distributional
limits in t, or in λ or ω, under scaling. 3 If f belongs to the distribution space
D′(R+), then for α in the interval (−k−2,−k−1), f(t) = O(tα) in the Cesàro
sense if and only if there exist “moments” µ0, . . . , µk such that

f(σt) =
k∑
j=0

(−1)jµjδ(j)(t)
j!σj+1

+O(σα) (23)

in the topology of D′, as σ → +∞ (with a similar but more complicated state-
ment when α is an integer). This theorem has applications to both G(t) and
E(λ) in the role of f . 4,5
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