
Minakshisundaram and the Birth of Geometric Spectral Asymptotics

Those who do not know what “geometric spectral asymptotics” is should think in
terms of this elementary example: A vibrating string of length L has normal modes (eigen-
functions) φn(x) = sin(nπx/L) with frequencies ωn ≡ √

λn = nπ/L (in units where the
speed of sound is 1), where n runs through all the positive integers. Note that

Z(s) ≡
∞∑

n=1

1
λn

s

is essentially the famous Riemann zeta function. The eigenfunctions satisfy the equation
and boundary condition

φ′′n = −λnφn , φn(0) = φn(L) = 0.

If we changed the boundary condition to φ′n(0) = φ′n(L) = 0 (which would be appropriate
for sound waves in a pipe with open ends), the normal modes would become φn(x) =
cos(nπx/L) and the case n = 0 would need to be included. Although we started with
a wave problem, exactly the same eigenfunctions solve the problem of heat conduction
in a bar of length L. The Green function (integral kernel) that gives the temperature
distribution u(x) at time t in terms of the initial temperature f(y) at time 0 is

K(t, x, y) =
∑

n

1
‖φn‖2 φn(x)φn(y)e−λnt. (1)

On the other hand, by the method of images (and the well known solution of the heat
problem on the whole real line) one can see that

K(t, x, y) =
1√
4πt

[
e−(x−y)2/4t ± e−(x+y)2/4t ± e−(x−2L+y)2/4t + · · ·

]
, (2)

where the + sign applies to the Neumann (organ pipe) boundary condition and the − to
the Dirichlet (string) case. Now examine the integral

∫ L

0
K(t, x, x) dx at small t; it can

be shown that only the first term in (2) makes a significant contribution except when x
is close to an endpoint, whereupon the second or third term must be taken into account;
and one gets ∫ L

0

K(t, x, x) dx ∼ L√
4πt

± 1
2

. (3)

Therefore, from a knowledge of the small-time asymptotics (3) of K we can read off the size
of the interval, L, and also (from the second term) which boundary condition is in force.
Working in another direction, comparing (3) with (1) one could get some information about
the eigenvalues if one did not know them already; for example, the fact that expressions
(3) for the Neumann and Dirichlet cases differ by exactly 1 reflects the presence of the
extra eigenvalue, λ0 = 0, in the Neumann case.
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Geometric spectral asymptotics is the extension of these considerations to more com-
plicated, multidimensional differential operators, such as

H = − ∂

∂x
a(x, y)

∂

∂x
− ∂

∂y
b(x, y)

∂

∂y
+ c(x, y).

On one side is the “geometrical” information contained in the operator itself, including
the region in (x, y) space where it acts, and the boundary conditions if any, as well as the
coefficient functions (here a, b, c). On the other side is the “spectral” information, such
as eigenvalues and eigenfunctions satisfying Hφn = λnφn . (Henceforth we also assume
without loss of generality that ‖φn‖ = 1 and φn(x) is real.) In the middle sit the various
integral kernels that solve various differential equations involving H, or, more generally,
represent functions of H; the heat kernel K, related to the eigenfunctions by (1), is one
of these. The study of these kernels, usually in various asymptotic limits, is the principal
tool for relating the geometry to the spectrum.

Around 1950, S. Minakshisundaram made three major contributions to the creation
of this subject.

In his paper [1] he generalized the Riemann zeta function by studying

∞∑
n=1

1
λn

s
and

∞∑
n=1

φn(x)φn(y)
λn

s
,

the second of these being the kernel of the operator H−s. ([1] does this for the Laplacian
acting in a region in Rn, but the idea applies to more general problems.) As functions
of the complex variable s, these zeta functions have nice analytic properties, and the
residues at their poles give information about the averaged density of the eigenvalues in
the high-frequency limit, and also about the eigenfunctions. Minakshisundaram credits
T. Carleman (in 1934) with the germ of the idea, but it seems that [1] and [2] are the
papers that made generalized zeta functions into standard tools.

Minakshisundaram’s most famous paper [2], written in collaboration with Å. Pleijel,
deals with the generalization of the Laplacian operator to Riemannian manifolds. In the
“flat” cases in [1] he had used the heat kernel (1) as an intermediate step in calculating
the zeta functions, or at least proving their analytic properties. On a curved manifold
one can’t expect to find exact formulas like (2), but in [2] the authors showed that a local
approximation to K can be constructed by a recursive method first applied by J. Hadamard
for solving the wave equation. (Nowadays the calculations are done in greater generality
and efficiency by pseudodifferential operators — i.e., introducing a local Fourier transform.)
[2] took a detour through yet another Green function, but in a less well known paper [3]
Minakshisundaram showed how to go directly from K to zeta. For a variety of reasons the
heat kernel is especially well adapted to deriving the main facts of spectral asymptotics
— the relation between the coarse features of the geometry and those of the spectrum.
Therefore, [2] founded an industry. Important extensions and applications were made by
the mathematicians Kac, Singer, Seeley, Gilkey, Atiyah, and Patodi, just to mention a few.
Related calculational methods were introduced into quantum field theory by the physicists
Schwinger and DeWitt.
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The analysis of the heat kernel yields a power series in
√

t for K or its integral, which
had only two terms in our example (3) but is infinite in general. The coefficients in the
series can be expressed fairly simply in terms of the geometry of the problem, and they are
closely related to the poles of the corresponding zeta function. Another related series — the
inverse Laplace transform of the heat-kernel expansion — is a formal expansion (in negative
powers of λ) for the density of eigenvalues in the high-frequency limit. Unfortunately, in
general only the leading term of this series provides a literally valid asymptotic formula for
the spectral density. Since the eigenvalues form a discrete sequence, such a series could not
be true to all orders; in fact, it usually goes bad even sooner, because of oscillations in the
density (which make no contribution to the asymptotics of K, but swamp the power-law
terms in the putative asymptotics of the spectrum). So, are the higher-order terms in the
series just nonsense? Here is where Minakshisundaram’s third contribution comes in: his
book [4] written with K. Chandrasekharan, which is one step in the development of the
theory of Riesz means — a generalization of the Cesàro summation (averaging of partial
sums) used to make sense of a divergent Fourier series. In the late 1960s L. Hörmander
showed that Riesz means provide a convenient, systematic way of interpreting all the terms
in the inverse Laplace transform of the heat expansion as correct and precise descriptions
of the “averaged” behavior of the spectral density.

Professor Minakshisundaram did not live to see the explosive developments in spectral
asymptotics in the early 1970s. First, there was a huge upsurge of applications to differen-
tial geometry, analysis, general relativity, gauge theory, quantum mechanics, and statistical
mechanics. Second, a new chapter was opened by the work of Gutzwiller, Balian, Colin
de Verdiere, and many other mathematicians and physicists. As previously remarked, the
“classic” spectral asymptotics based on the local construction of the heat kernel yields only
the averaged behavior of the spectrum, not its oscillatory fine structure. The “new” theory,
still under development, relates that fine structure to a corresponding fine structure of the
geometry, namely, the periodic orbits of the underlying classical-mechanical system having
H as quantum Hamiltonian. This connection is relevant to the shell structure of nuclei,
the electromagnetic vacuum energy discovered by Casimir, and the distinction between
chaotic and integrable systems. The link between geometry and spectrum is still usually
sought through integral kernels, but one must study kernels that are harder to calculate
than K, precisely because they do not separate the coarse features from the fine structure.
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