[cylinder kernel of R? in polar coordinates]

We have:
t
2rT(t,r,x') = ,
(t2 4 |r —1r'|?)2
_ t
(12 + (rcosf — 1 cos )2 + (rsinf — 1’ sin ¢)?)3
t
B (t2 + 12 4+ r2 — 2rr' cos(0 — 0’))%
oT
) Yl
ot
where 27T = ((£ + 12 + 1" — 211" cos(0 — 0'))
Consider:

82T+62T+16T+ 1 82T_0
oz or2  ror  r2of?
We assume T'(0 + 6,) = T(0) and

T(0,0,1) = 26(r — )5(6 — ¢)

,
Expand T in Fourier sum in 6:
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From (6) and (8), take ' = 0 WLOG, we obtain
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The solution of (17) has the form of Bessel functions Jjy(wr) (and not Y}y /(wr) because

of the minimal irregularity at r = 0). Now we have
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When ¢ = 0, from (11), we have
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and from (18):
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So one can solve for T'(w):
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From this one can get
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The formula for T is the same with wdw replaced by —dw. From Gradshteyn-Ryzhik,
(6.612.3), we get a Legendre function of the second kind:
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where coshug = £+ Tf we follow equation (2.17) and (2.18) of Smith, we’ll get the
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same final answer as t{t3d.



