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I want to show how the approach of Helliwell and Konkowski [8] (derived from Deutsch
and Candelas [6]) is related to the two formulas derived in ckpc and tft3d. Actually, I prefer
to work entirely in the elliptic domain, with a cylinder kernel instead of a Green function
for the wave equation. Equation numbers in brackets are pointers to the closest equivalents
in [8].

Consider the operator [(4)]

H ≡ − ∂2

∂t2
− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂θ2
. (1)

Note that t is a cylinder coordinate, not physical time. Now e−sH is a heat operator with
respect to an additional “time” coordinate s. Thus [(8)]

G(x, x′) =
∫ ∞

0
ds e−sHδ(x, x′) (2)

is the integral kernel of the operator

∫ ∞

0
e−sH ds =

e−sH

−H

∣

∣

∣

∣

∣

∞

0

= H−1; (3)

this calculation is meaningful when H (is essentially self-adjoint and) has no negative spec-
trum and no zero eigenvalue.

The (generalized) eigenfunctions of H are [(6)]

u(x, ω, p, n) =

√

p

θ1

J|λ|(pr)e
iωteiλθ (4)

where

λ = λn ≡ 2πn

θ1
(5)
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and the eigenvalue is −(ω2 + p2). (Following [8] I have included the normalization factor for
the discrete θ eigenfunction but left the 2π for the ω integration in the next step.) Therefore
[(7)]

δ(x, x′) =
∫ ∞

−∞

dω

2π

∫ ∞

0
dp

∞
∑

n=−∞

u(x)u∗(x′). (6)

Combining (6), (2), and (4), we get [(9) or (10)]

G(x, x′) =
∫ ∞

−∞

dω

2π

∫ ∞

0
p dp

∫ ∞

0
ds

1

θ1

∞
∑

n=−∞

e−s(ω2+p2)eiω(t−t′)J|λ|(pr)J|λ|(pr
′)eiλ(θ−θ′). (7)

Now let’s consider strategies for evaluating, or at least simplifying, this expression.
Approach 1: Do the s integral first. In effect, this undoes steps (2) and (3) to construct

the integral kernel of H−1 directly. We get

G(x, x′) =
1

2πθ1

∫ ∞

−∞
dω

∫ ∞

0
p dp

∞
∑

n=−∞

1

ω2 + p2
eiω(t−t′)J|λ|(pr)J|λ|(pr

′)eiλ(θ−θ′). (8)

More directly: The Green function should satisfy HxG(x, x′) = δ(x, x′), which is

∂2G

∂t2
+

∂2G

∂r2
+

1

r

∂G

∂r
+

1

r2

∂2G

∂θ2
= −1

r
δ(r − r′)δ(θ − θ′)δ(t − t′). (9)

This is equivalent to (1) of tft3d, since T = − 2G|t′=0. Let us solve (9) by a complete
Fourier analysis:

Ĝ(ω, p, n, x′) ≡ 1

2π

∫ ∞

∞
dω e−iωt

∫ ∞

0
r dr J|λ|(pr)

1

θ1

∫ θ1

0
dθ e−λθG(x, x′), (10)

whence

−ω2Ĝ − p2Ĝ = − 1

2πθ1
e−iωt′J|λ|(pr

′)e−iλθ′ . (11)

Invert all the transforms:

G(t, r, θ, x′) =
∫ ∞

−∞
dω

∫ ∞

0
p dp

∞
∑

n=−∞

eiωtJ|λ|(pr)e
iλθĜ(ω, p, n, x′). (12)

From (12) and (11), (8) results immediately.
There are two ways to press onward:
Approach 1(a): Do the ω integral in (8) next. We can assume that t − t′ > 0, since for

the standard cylinder kernel we need to take t′ = 0, t = 0. Then we can close the contour in
the upper half plane, and since

ω2 + p2 = (ω + ip)(ω − ip),
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there is a pole at ω = ip and the other factor becomes 2ip. After cancelling 2πi, etc., we
have

G =
1

2θ1

∫ ∞

0
dp e−p(t−t′)J|λ|(pr)J|λ|(pr

′)eiλ(θ−θ′), (13)

which is essentially the result of solving the cylinder-kernel problem by separation of vari-
ables: see (25) of ckpc and the remark following it.

Approach 1(b): Do the p integral next. The relevant integral is Gradshteyn–Ryzhik
6.541.1:

∫ ∞

0
pJν(rp)jν(r

′p)
dp

p2 + ω2
= Iν(|ω|r<)Kν(|ω|r>). (14)

It converts (8) to

G(x, x′) =
1

2πθ1

∫ ∞

−∞
dω

∞
∑

n=−∞

eiω(t−t′)I|λ|(|ω|r<)K|λ|(|ω|r>)eiλ(θ−θ′), (15)

which is equivalent to formula (14) of tft3d.
Approach 2: In (7) do the ω integral first. This is the route taken in [8] and [6]; those

authors do a polar integral in (ω, k) space, but we have no k. As anticipated, they get a
more closed final form in 3D than we can get in 2D. Using

1

2π

∫ ∞

−∞
dω e−sω2

eiω(t−t′) =
1√
4πs

e−(t−t′)/4s, (16)

I get

G =
∫ ∞

0
p dp

∫ ∞

0

ds√
s

1

2θ1

√
π

∞
∑

n=−∞

e−(t−t′)/4se−sp2

J|λ|(pr)J|λ|(pr
′)eiλ(θ−θ′). (17)

I suspect that either the p or the s integral or both can be evaluated by known formulas,
but I shall stop here for today.
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