Two-dimensional Fuclidean Helliwell-Konkowski
Calculation

15 June 2008

I want to show how the approach of Helliwell and Konkowski [8] (derived from Deutsch
and Candelas [6]) is related to the two formulas derived in ckpc and tft3d. Actually, I prefer
to work entirely in the elliptic domain, with a cylinder kernel instead of a Green function
for the wave equation. Equation numbers in brackets are pointers to the closest equivalents
in [8].

Consider the operator [(4)]
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Note that t is a cylinder coordinate, not physical time. Now e™*" is a heat operator with

respect to an additional “time” coordinate s. Thus [(8)]
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is the integral kernel of the operator
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this calculation is meaningful when H (is essentially self-adjoint and) has no negative spec-
trum and no zero eigenvalue.
The (generalized) eigenfunctions of H are [(6)]
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and the eigenvalue is —(w? + p?). (Following [8] T have included the normalization factor for
the discrete 6 eigenfunction but left the 27 for the w integration in the next step.) Therefore
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Combining (6), (2), and (4), we get [(9) or (10)]
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Now let’s consider strategies for evaluating, or at least simplifying, this expression.
Approach 1: Do the s integral first. In effect, this undoes steps (2) and (3) to construct
the integral kernel of H~! directly. We get
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More directly: The Green function should satisfy H,G(z, ") = §(z, '), which is
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This is equivalent to (1) of t£t3d, since T = — 2G|, _,. Let us solve (9) by a complete
Fourier analysis:
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whence
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Invert all the transforms:
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From (12) and (11), (8) results immediately.

There are two ways to press onward:

Approach 1(a): Do the w integral in (8) next. We can assume that t — ¢’ > 0, since for
the standard cylinder kernel we need to take t' = 0, t = 0. Then we can close the contour in
the upper half plane, and since
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there is a pole at w = ip and the other factor becomes 2ip. After cancelling 27, etc., we
have
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which is essentially the result of solving the cylinder-kernel problem by separation of vari-
ables: see (25) of ckpc and the remark following it.

Approach 1(b): Do the p integral next. The relevant integral is Gradshteyn—Ryzhik
6.541.1:
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It converts (8) to
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which is equivalent to formula (14) of tft3d.

Approach 2: In (7) do the w integral first. This is the route taken in [8] and [6]; those
authors do a polar integral in (w, k) space, but we have no k. As anticipated, they get a
more closed final form in 3D than we can get in 2D. Using
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I suspect that either the p or the s integral or both can be evaluated by known formulas,
but I shall stop here for today.



