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Preliminaries

We shall need to consider the differentiation of functions and distributions defined
only on a smooth hypersurface > of R". Naturally, if (Va);<,<,_; is a local
Gaussian coordinate system and f is defined on ¥ then one may consider the
derivatives 3f/ava, 1 < a < n— 1. However, it is many times convenient and
necessary to consider derivatives with respect to the variables (Xj)lgj<n of the
surrounding space R". The d—derivatives are defined as follows.

Definition
Suppose f is a smooth function defined in & and let F be any smooth extension
of f to an open neighborhood of ¥ in R"; the derivatives 8F/8Xj will exist, but

their restriction to X will depend not only on f but also on the extension
employed. However, it can be shown that the formulas

of OF dF

dx; 0x; I dn
where n = (n;) is the normal unit vector to X and where dF /dn = n OF /0x
is the derivative of F in the normal direction.

(1)

)
pN

v
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Preliminaries

Fact

Delta derivatives 5f/5Xj, 1 < j < n, that depend only on f and not on the
extension.
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It can be shown that
of  Of Ova

()

In this talk, we suppose now that the surface is S"~1, the unit sphere in
R". Let f be a smooth function defined in S"~1, that is, f (w) is defined if
w € R" satisfies |[w| = 1. While (1) can be applied for any extension F of
f, the fact that our surface is S allows us to consider some rather natural
extensions. In particular, there is an extension to R” \ {0} that is
homogeneous of degree 0, namely,

Rt =f(%), (3)

r

where r = |x| . Since dFy/dn = 0 we obtain

o _ ok
5)9-_8Xj

S
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Preliminaries

d(p) oY 09
5x; = ¢5—Xj + 5—Xj¢7 (5)
Lemma
5T (¢p) _ 0Ty 69
Proof.

5T (ev) [\ ¢\ 8¢
< 5XJ 74 __<¢¢7E>—_<¢7¢E>

5 T
—— (v 282y <¢5—¢ + %w,c> |
J

dX; 0X; 0X;

Ol

v
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Preliminaries

Thus
5T 6T (¢-1) _¢571+5_¢
§xj  ox T 0x Ox)
e And -
0'1
oy —(n=1)n
So
5Tn,-
(5_)(1- = 5,1 — (n,-nj) — (n — 1) (n,-nj) = (5,] —n— ]_(n’.nj)
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A Short Review

Problem

/ cos (2kx) dx.
0

Proof.
[1]

o0 1 +oo
/ cos (2kx) dx. = 5/ cos (2kx) dx
0

—00

A
i / e2lkx dx
2 )

= 75 (2k) = gé(k)

O]

v
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A Short Review

On the other hand,

Proof.

2]

sin (2kx) | i sin (2kx)

2kx) dx = =
/0 cos (2kx) dx T Jim —

By definition of a distribution, we must evaluate this limit on a test
function, f (k), with support in [0, c0) :

lim /Ooo —Singzkx)f(k) dk = lim /Ooo sin (209 £ 4y ik,

X—00 k X—00 2k

x=0

:%f(o)/ooowcfuzgf(oy

So [y° cos (2kx) dx = 76 (k).
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A Short Review

Solution
[Correction of proof 1]

o) +o00
/ cos (2kx) dx. = %/ cos (2kx) dx
0
L
2

Here 1o
/ e2ikx gy — _7:{’{; 2k} = 2775(2/() = Wg(k)-

(0.9}
is the Fourier transform of the funcion 1 in the space W' and result in S.,,
the thick point space. This result holds for k positive or negative.
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A Short Review

Solution

[Correction of proof 2]
As were pointed out, in solution 2, we have "secretly” multiplied H (k).

lim /%0 (MH(k))f(k)dk: lim /Ome(k)dk

X—00 J_ 2k X—00 2k

In fact if we want the result for k > 0, we need to apply the projection
multiplicaiton operator My, : S, — S':

H (k) /OOO cos (2kx) dx = g/vl;, (S(k)) =25k (8)

Now the consistency of the results holds.

Yunyun Yang (Louisiana State University) | Distributions in Spaces with Thick Points II May 18, 2012 10 / 44



Space of Test Functions on R” with a Thick Point

Definition
A function ¢ defined on R” is in D, , (R") iff

p(a+x)=¢(a+rw) Zaj

where N is an integer, and w €S"" !, a, (w) € D (S"1).

Moreover, we require the the asymptotic development to be "strong".
Namely, for any differentiation operator (9/0x)P = (9P'...0P) /OxI*...Oxf"
, the asymptotic development of (9/0x)P ¢ (x) exists and is equal to the

o0
term-by-term differentiation of > aj (w)r’.
=N
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We use D, (R") to denote D, o (R").
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Space of Test Functions on R” with a Thick Point

Definition

Define DI (R™) as the subspace consists of test functions
¢ (rw) ~ ay(w)r’
J=k

Notice that D! (R") is not closed under differentiation.

Note: In particular, if ¢ is a smooth function, then
plat+rw)~a+ Y ay(w)r! e pl! (R™). So D, (R") C Dya (R7).
J=1
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The Topology—to have a TVS

Definitions
Define a seminorm.
I—1 )
(0/0x)P ¢ (x) — ' /\; ajp(w)r
1]l = sup i Jd=N-lp| (9
' lp|<m r
where -
(0/0xP ¢ (x) ~ > ayp(w)r’ (10)
J=N—|p|

A sequence {¢,} in D, (R") converges to ¢ iff there exists an integer N

such that ¢ € DLN] (R") ,and a compact set K such that for any /, m, we
have [|¢ — @ull; , — 0 as a — oo.

Yunyun Yang (Louisiana State University) | Distributions in Spaces with Thick Points Il May 18, 2012 14 / 44



Space of Test Functions on R” with a Thick Point

Fact
D (R") is a subspace of D, (R")
i : D(R")— D, (R") (11)
¢ — ¢
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Space of Distributions on R"” with a Thick Point

Definitions
The space of distributions on R” with a thick point is the dual space of
that contains all the continous linear functionals of the test functions. We

denote it D, (R").
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Space of Distributions on R"” with a Thick Point

Definitions
The space of distributions on R” with a thick point is the dual space of
that contains all the continous linear functionals of the test functions. We

denote it D, (R").

Theorem

DD, , (12)

™

/ /
W o = T
7, the projection operator is given explicitly as

(m (), d)prxp = (F, i(¢)>’Di’a><'D*7a : (13)
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Space of Distributions on R"” with a Thick Point

Theorem

DD,

™

ka’ ,— D
m, the projection operator is given explicitly as

<7T (f) 5 ¢>D’><D = <f7i(¢)>’Dg7a><D*,a :

Theorem

Let g € D', there exists a distribution f € D, ,,s.t. 7(f) = g.

Yunyun Yang (Louisiana State University) | Distributions in Spaces with Thick Points || May 18, 2012 18 / 44



Space of Distributions on R"” with a Thick Point

Example

Suppose f (x) is a locally integrable funcion in R”, homogeneous of degree
0 Now let's define a "thick delta function" £, € D, (R"):

Let ¢ be a test function in D, (R"), thus by definition ¢ could be
asymptotically expanded as

(ee]

Stay(w)r! =ay(w)rV 4.+ ag (w) +ag (w)r+ ...
J=N
Then fd, is given by

1
<f5*u¢>D;(R")><D*(R") = Co 1 (f(w), a0 (W)>D;(S"*1)><D*(S"*1) (14)

1
— /S (w)ao (w) dor (w)
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Space of Distributions on R"” with a Thick Point

Example
When n = 3,
1
(F6es) = 3 [ F(w) a0 (w) dor(w)
™ Jsn—1
Example

In particular, if £ (x) = 1, thenfd, = d, :

1
Bu O)pyyxpa@n © = ¢ (L2 (Wpn)up. o)

= Cnl—l /Snl agp (w) do (w)

. We may call d, the "plain thick delta function".
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Projection of a Thick Delta Function onto the Usual
Distribution Space

Example

Since a usual test function ¢ € D' (R") can be asymptotically expanded as

o0
it's Taylor expansion: ¢ (rw) ~ag + >_ay (w)r’, so

J=1
(7 (F6.) ) = (£, () (15)
1
= /Sn—l f (w) apdo (w)
= 0 w oW
-2 [ fwdow) o)
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Projection of a Thick Delta Function onto the Usual
Distribution Space

Example

In particular, for a plain thick delta function, it projects onto the usual
delta function:

a0

(6. %) = 22 [ dotw) 7)

= a0 = ¢(0)
= (3,7
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Space of Distributions on R"” with a Thick Point
Definition
(thick delta functions of degree m) A thick delta functions of degree m,

denoted féim], acting on a thick test function ¢ (x) is defined as the action
of f on ap, (w) in the corresponding asymptotic expansion divide by the
surface area of S"~1. Namely,

[ _ !
@ ’¢>D, @ryxany ~ Cog 2 am (Wpyertyxp, o)

Example

If fis a locally integrable funcion in R”, homogeneous of degree 0, a
natural example would be

[m] - -
<f5* ’ >D;(R")xD*(R") - Coa et (w)>D;(Sn_1)XD*(Sn_1)
= / f(w)anm(w)do(w)
Cn_]_ Sn—1
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Space of Distributions on R"” with a Thick Point

Definitions

Let f,g € DL(R"),and ¢(x) € D, (R") is a test function. We define the
following algebraic operators:

O (f+g,9)=(f9)+(g,9).

Q (f(Ax),¢(x)) = ﬁ (f(x),¢ (A"*x)). where A is a non-singular
n X n matrix. In particular, (f (—x), ¢ (x)) = (f (x), ¢ (—x))

Q@ (f(x+c),0(x)) =(f(x),0(x—c)), where c € R".

Q (pf,¢) = (f, po), where p is a multiplier of D, ,, i.e. pp € D, ,,
Vo € Dy
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Derivatives on Thick Distributions

Definition
The p — th order derivative of a thick distribution f € D/, is given by

o*\" p| 0\" Ip| (8"1...8P") (b
(&) o) = (&) o) - o)
We can call it "thick distributional derivative" to indicate the space D, in
which f sits. )

Example
a first order parital derivative on f may be given by

’f N\ /. 9
(50 =" 5)
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Derivatives on Thick Distributions

Lemma
Suppose f € D;; and the projection of f onto D' is 7 (f) = g. Then
(0" /ox)P f = (9/0x)" g.

Proof.
if ¢ is an ordinary test function that is in D (R"); i denotes the inclusion
map from D to D,; the projection of f from D'to D, is 7 (f) = g, then
we have,

(&) rr) = ol () o) =com{er|(G) o
— 0 (x 0. (5) o) - <(§) g,¢>
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More about derivatives

Because a, (w)'s are finite on S"71, the asymptotic expansion,
e} o0

o(rw) ~ > ay(w)r! = S ay(x/r) r’ etc.
J=k

J=k
So

99 _ —0day (x/r) | -1
D% —J:k—axj r’ 4+ Jay (x/r) njr
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Distributional Derivative of 1/r

Lemma
The partial derivative of the thick delta function W,‘(S£<m] with respect to x;
is
? (ning]) [m+1]
— o5 [6; + (—=m — 1 — n) ninj] 54"

where §j; is the Kronecker delta function, m is the degree of W,'(SLm], nis
the dimension of R", w; = x;/r,w; = x;/r.

Proof.

[m]
M o) = (sl 09
3)(] 9 1Y% ,8)(‘]

Ol

v

Yunyun Yang (Louisiana State University) | Distributions in Spaces with Thick Points ||

May 18, 2012 28 / 44



Distributional Derivative of 1/r

Proof.

/ -
n
Cnf]_ Sn—1

1

] 53m+1 (W)
0xj

The result is obtai

0xj

B 1 o dam+1 (w)
Cn—l iy
1

ned.

(4 1) s (w)] dor(w)

>D;(S"—1)><D*(S"—1)

(ni, (m =+ 1) wjam 1 (W))p; sn-1)xD, (s7-1)

7, am+1 (W)>

DL(S7~1)xDx(8"1)

o7 n;

T o — n(niny)

- <(m +1) nin16£m+1]’¢>D’*(R

O]
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Distributional Derivative of r*

In his paper, [4,Franklin] brought up a question: As a distribution, the
well-known formula of the second derivative of 1/r

=2
0 1\ 3xix — r25,-j 47
Ox;0x; (7) N ro B ( 3 )6'16()()

cannot act on functions that are not smooth at the orign.
In other words,

52

1 = 3xix; — r25/j am y / /
Ox;i0x; (7) - /5 3 9jj0 (x) € D'but ¢ D,
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Distributional Derivative of 1/r

Definition
Let ¢ € D, (R"),

(PF(r).¢) = Fp. lim /X|>E ¢ (x) dx

(&) 7()0) = (o) () o)

= (=1)P F.p.Ein;o/IP 1% (%)Pgé(x)dx
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Distributional Derivative of r*

Lemma

We denote S?~! the n-1 sphere with radius e.

Define (r*n;6 (S271) , ¢ (x)) = Jso e*n;¢ (x) dx.for any thick test
function ¢,then

lim (P (827) 6 (x))
{ =0 ifA¢Z

1—-n—2X\ .
_ <cn 1N g (x )>DI(SH71)XD*(SH71) ifAEZ

Proof.

<r n;é (S" 1) ¢(x)> = /Sn1 5/\nj¢(x)dx

(>

= / e nj¢ (ew) " Ldo (w)
5‘11—1
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Distributional Derivative of r*

Theorem

*

AxjPf (r272), AN¢Z

ax; (pf (M)) = { MPF (P=2) + G y ez (18)

where C,_1 is the surface area of the n — 1 unit sphere.
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Distributional Derivative of r*

Proof.
By definition,

9" A _ A 99\ _ - / 20
<8Xij (r )¢> - <Pf (r )’axj> =—Fpim | rgeds

We already know the usual distributional derivative of H (r — &) r* is given
by [2,Kanwal]

9 A oy, A2 A
a—)(j(H(r—a)r>—)\xjr H(r—e)+r'nj6 (S;)

O]

v
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Distributional Derivative of r*
Proof.

So equation 19 becomes
Folim (5 (M=) 0)
= F.p.Ein;o <)\xjr)‘_2H (r—e)+ r/\njfs (Se), <I5>
(P (P2 ) ot (P9 5.0)

By 29, lim (r*n;6 (S271), ¢ (x)) = Cn_lnjéLl_"_)‘] So the theorem
E—>
holds. Ol

Example
When n = 3, A = —1,the first derivative of 1/r is

a*

(pf (r7Y)) = —x;Pf (r73) + dmnl Y

()X
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Second Order Distributional Derivative of r?

Lemma

Theorem
If X is an integer,

85:; (of () = awAPF(P72) + A (A = 2) i PF (P74)
J

+GCr-1 (22 - 2) njnk(;L—A—n+2] n Cnfléjk(SL_)\_n_’_z]
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Second Order Distributional Derivative of r?

Proof.

Take the derivative of the first order derivative

g;j (pf (r)) = Ax;Pf (r*=2) + Cn_lnjdgﬁ_)‘_"ﬂl, we have

o (ol =)

Oxy
= SuAPF <M—2) +Ax (A —2) Pf <r)\—4>

+Cnfl

o (njaL—A—n—i-l])

+2x;Cro1 R S RGN
OX

O]

v
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Second Order Distributional Derivative of 1/r

Proof.

Together with the lemma 27,
B n.(s[k—)\—n+1] .
(JT) = [0 + (A = 2) mym] 852772,

And by lemma 32, XJ-(SL_A—"H] _ nj5£<_’\_"+2].

So, O

Theorem
If X is an integer,

85;; (pf (M)) = SpAPS <M—2) + A\ = 2) xx PF (r’\_4)
J

+Co-1(=n—1) ”j”k5£<_/\_"+2] + Ch1 jk&[k_’\_"J’z

v
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Second Order Distributional Derivative of 1/r

Theorem

If X is an integer,

oo (P (7)) = 0P (P2) A0 2P (2)
J

+Cn—1 (2)\ = 2) ”j”k5>[k_)‘_"+2] + Cn_léjk(sL—/\—n—‘,—Q]

Example
If n=3\=—1,

8*2
ST (PF (7)) = SxuPr (r=%) — 5PF ()
J

—167rnjnk5* + 471'5]';((5*
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Second Order Distributional Derivative of 1/r

So in the thick point spaces,

o* 1\ 3xxk — r26jk 167Xk 04 (X)
8Xjan (7) == r5 r2 + 47T5Jk5* (20)

In particular, if ¢ (x) € D(R"),i.e., ap is a constant, then

167 x;x 167
_/ r2j £0. (%) ¢ (%) dx = —4«90/ ninjdo (w)+4djca0 = —a0—=jx
RS -

/ 47535. (x) & (x) dx = 476120
R3

Hence the projection is given explicitly as:

6* 1 . 3X,'XJ' — r25,~j A -
e (1) =225 - (F)ose) @)
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Second Order Distributional Derivative of 1/r

Conclusion:

* iXi — 2 ii 1 [ *
F) 1\ _ 3xix — rodjj  (16mxx,0x (x) + 470 10 (22)
r? ’

Oxi0xj \ r ro
is a thick distribution.
o* 1),  3xix; — r25,-j 47
oge ()= 2252 = (F) o) @)

is a usual distribution.
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