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In vacuum energy calculations with an ultraviolet cutoff, divergences arise that

clearly are related to the physics of boundaries. We point out how to find the

cut-off energy density and pressure most directly from a Green function. Then

we discuss three apparent paradoxes arising in this work that are in various

stages of resolution.
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1. Introduction

The main principles of our working philosophy toward vacuum energy and

its divergences are the following.1

Local energy density and pressure, the components of the stress tensor

T µν(r), are important for understanding the physics. Semiclassical path

analysis (reducing in the simplest cases to exact image solutions) is illumi-

nating. Idealized models with perfect reflection boundary conditions (and

a scalar field, often in lower dimensions) can still be instructive, provided

one is honest and sensible about their limitations.

To understand the physics of divergences, it is best to use an ultraviolet

cutoff. Zeta and dimensional methods of regularization hide the divergences

in an ad hoc way and yield global energies that are inconsistent with the

local T µν(r) and hence with general relativity.2 At the other extreme, de-

tailed modeling of real materials is hard, and also too specific: real metals

have little to do with hadron bags, cosmological branes, thermal fluctua-

tions in biological membranes, and other situations where Casimir-type cal-

culations have been conducted. An ultraviolet cutoff in quantum vacuum
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calculations is like the repulsive core in the Lennard–Jones potential. A

more accurate atomic potential would be based on the electronic structure

of atoms — but would not apply to nucleon-nucleon scattering. Similarly,

a simple frequency cutoff is universally applicable, mathematically conve-

nient, and qualitatively physically plausible — but can’t be expected to

model real metals at atomic-scale distances.

Our mathematically preferred cutoff is the factor e−tωj , but others are

possible and may be physically superior. (Note that the ω−2
j of dielectric

theory is not sufficient. Further account of the granular structure of matter

is needed.3,4) Thus we study a regularized total energy

E(t) ≡ 1

2

∞
∑

j=1

ωje
−tωj (t ↓ 0) (1)

and a regularized energy density

ρ(r, t) ≡ 〈T 00〉 ≡ 1

2

∞
∑

j=1

ωj |φj(r)|2e−tωj (2)

with similar formulas for the other components of T µν . (Equation (2) ap-

plies to the value ξ = 1
4

for the curvature coupling parameter. Other cases

are similar but more complicated.1)

2. Integral Kernels in Billiards and Cavities

Associated with any self-adjoint second-order linear differential operator

H is a dizzying array of integral kernels (also called Green functions or

spectral functions), most of which implement the solution of some partial

differential equation involving H . They include the resolvent kernel (energy-

domain Green function) G(k, r, r′) = 〈r|(H − k2)−1|r′〉, the heat kernel

K(t, r, r′) = 〈r|e−tH |r′〉, the quantum kernel U(t, r, r′) = 〈r|e−itH |r′〉, the

local zeta function Z(s, r, r′) = 〈r|H−s|r′〉, and the cylinder kernel

T (t, r, r′) =

〈

r

∣

∣

∣

∣

∣

e−t
√

H

−
√

H

∣

∣

∣

∣

∣

r′

〉

. (3)

Of foremost importance to us is that derivatives of the cylinder kernel

comprise the regularized stress tensor:

ρ(r, t) = − 1

2

∂2

∂t2
T (t, r, r) (if ξ = 1

4
), etc. (4)

Note that U(t) = K(it) ; similarly, the analytic continuation of T to

imaginary time is one of the Green functions associated with the wave
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equation. In a compact system the eigenvalue density is an integral of the

imaginary part of G, and this fact has a local counterpart:

σ(r, k) dk =
1

π
Im G(r, r, k) d(k2). (5)

A Laplace transform with respect to k2 leads from σ to K, and from K

to G. A Laplace transform in k leads directly from σ to T , which is also

related to K by
∫ ∞

0

t−1/2e−τ2/4tK(t) dt = −
√

π T (τ). (6)

Because of all these interrelations, each spectral function in some sense

contains all the information in any of the others, though perhaps in a less

(or more) accessible form.

In the asymptotic construction of Green functions it is useful to use what

is known in general relativity as the Synge–DeWitt formalism5,6 and used

in classical optics in different notations.7 Let L(r, r′) denote the distance

from r′ to r along (in the present context) a straight path with specular

reflections, and let σ(r, r′) ≡ 1
2
L(r, r′)2. Then (∇ ≡ ∇r)

•
•

...........................................................................................................................................................................................................
..........................................................................................................................................................................................................

...............................................................................................................................................................................................................
........................

........................
........................

.........................
........................

........................
........................

........................
........................

........................
..........................
.......
....
...
...
...
..

..............................

••••••••••••••••••••
••••••••••••••••••••
••••••••••••••••∇σ

r′
r

(i) ∇σ = L∇L = Ln̂, where n̂ is the unit vector at r in the direction of the

path;

(ii) (∇σ)2 = L2 = 2σ;

(iii) ∇2σ = 1 + L∇ · n̂ = d + O(L2) (where d is the spatial dimension,

usually 3);

(iv) For the direct path (no reflections), σ = 1
2
|r − r′|2, ∇σ = r − r′, and

∇2σ = d.

For H = −∇2 in a cavity, we can now construct any kernel by the optical

approximation. Let G stand for the function in question (not necessarily the

resolvent kernel). We seek it in the form of a sum over specularly reflecting

paths of terms

Gj = (−1)jDj(r, r
′)F (σ(r, r′)), (7)

where (−1)j means the parity of the number of reflections (so that the

Dirichlet condition is satisfied by the sum), and D does not depend on the

parameter t or k (though F does). The central observation of this section

is that D comes out the same for all the kernels. (This is true for billiards

and cavities, not for Schrödinger operators with potentials, whose kernels
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do not factor as nicely as in Eq. (7).) Thus we have the option of studying T

directly, instead of starting with G or U and passing through σ, as usually

done.

Proof and construction. Plug ansatz (7) into the partial differential

equation defining G. Group the terms by order of singularity; it will be

seen that the leading term vanishes if F (1
2
|r − r′|) = G0(·, r, r′), the corre-

sponding kernel in R3. For the most familiar kernels, the singularity occurs

in the limit t ↓ 0 or k → +∞. For T , “singularity” refers to powers of

(t2 + 2σ)−1, and the conclusion thus far is that

F = T 0 = − 1

2π2

1

t2 + |r − r′|2 . (8)

Then the next term vanishes if D ≡ | detM |1/2, where Mjk ≡ ∂2σ/∂rj ∂r′k .

In other terms, detM = Ld−1δ where δ(r, r′) is the enlargement factor

d(angle)/d(area) exploited by Scardicchio and Jaffe.7

3. Paradox Past

Why is the “renormalized” total energy finite (and independent of ξ) when

the “renormalized” energy density has a nonintegrable, ξ-dependent singu-

larity at a boundary? (Here “renormalization” refers to the “unspeakable

act” of discarding the divergent terms in E(t) and ρ(r, t) as t → 0 ; this

is not the place to discuss its physical justification, or lack thereof.) This

question was essentially raised by Deutsch and Candelas2 and essentially

answered by Ford and Svaiter.8 I have dwelt upon it at previous QFExt

meetings, so I’ll dismiss it quickly here: limt↓0 ρ(r, t) is a limit nonuniform

in r, so taking the limit outside the integral over space is not the same as

taking it inside. (See figure in Sec. 5.) In fact, the integral E(t) for small,

nonzero t may have the same or the opposite sign as lim ρ(r, t), depending

on ξ and other features of the configuration studied.1 When t is finite, so is

E(t) =
∫∫

dS
∫

ρ dz (z ≡ distance from boundary). Thus the cutoff theory

is internally consistent (so far).

4. Paradox Present

The cutoff-dependent surface energy of a sphere depends on radius. Where is

the corresponding pressure? The regularized energy near a spherical surface

of radius R, on either the inside or the outside, is

E(t) = − R2

2t3
+ O

(

R

t2

)

. (9)
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(This result can be derived from either the heat-kernel expansion or the

leading term in a multiple-reflection expansion.) It follows that there must

be a generalized force and corresponding radial pressure

F = − ∂E

∂R
=

R

t3
, pr =

F

4πR2
=

1

4πRt3
. (10)

For a thin shell these quantities should be multiplied by 2 to account for

both inside and outside. (This discussion refers to a scalar field. It is well

known that the corresponding quantities vanish for electromagnetism be-

cause of cancellation between two classes of modes.)

However, one seeks in vain for such a term in previous direct studies

of Tµν near a sphere.9–11 Furthermore, in [1] we said that in a rectangle,

there is a divergent pressure on a particular side, but it is unrelated to

the divergent energy density in the region adjacent to that side (which

is independent of the position of the side). Instead, it corresponds to the

length dependence of the divergent energy in the edge regions along the

perpendicular sides. (In a piston it is cancelled by the exterior.) But in

a sphere, there is no perpendicular side! The sphere pressure manifestly

comes from pr , not the pressure p⊥ in the tangential directions, and it

must somehow arise from the curvature.

Note that here we are not talking about an aspect of the “first-order

curvature term” in the heat kernel, spectral density, and energy. That ef-

fect has opposite signs for inside and outside and same sign for Dirichlet

and Neumann conditions. This effect must have same sign for inside and

outside and opposite signs for Dirichlet and Neumann, like the curvature-

independent surface term in the energy from which it arises.

We first investigate the situation in the optical approximation, using

the T formalism from above and the enlargement factor D for a sphere

calculated by Scardicchio and Jaffe.7 With 2σ = 4(r − R)2, we find

ρ = − 2t2R

π2r
(t2 + 2σ)−3 +

R

2π2r
(t2 + 2σ)−2, (11)

p⊥ = −
(

R

2π2r

)

(t2 + 2σ)−2 − R

16π2r3
(t2 + 2σ)−1, (12)

pr = 0 − rR

8π2(R − r)r3
(t2 + 2σ)−1. (13)

The vanishing leading term in Eq. (13) emphasizes that the radial pressure

is in a sense less singular than the other components, which removes any

contradiction with [10]. Very surprising, however, is the remaining term in
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Eq. (13), which displays a divergence at the surface, r = R. This divergence

is purely geometrical, not ultraviolet; it exists although the cutoff t is still

finite! It constitutes a failure of the single-reflection optical approximation.

(It arises in terms involving 2 derivatives of D, and those are of same order

as terms omitted from T ≈ D(t + 2σ)−1. This is a generic limitation of

WKB-type methods.)

Attempts to construct an optical approximation of higher order in sta-

tionary phase (routine in curved manifolds without boundary5) break down

at boundaries. (See [12] for the analogous problem with the heat kernel.)

Such expansions can’t naturally yield arctangent terms, which are almost

certainly present, as we’ll see presently. Instead, we shall turn to the full

multiple-reflection expansion, integrating over paths whose reflection need

not be specular.

First, however, consider the implications of the conservation law,

∇µT µν = 0. Under the symmetry conditions of our problem,10 one of its

components is

∂pr

∂r
+

2pr

r
− 2p⊥

r
= 0 ⇒ pr =

2

r2

∫ r

p⊥ r dr. (14)

Then Eq. (12) suggests that pr must contain a term

− R3

π2t3r2

4R2 + 3t2

(4R2 + t2)2
tan−1

(

t

2(R − r)

)

∼ − 1

8πRt3
(15)

(for r = R, t ≪ R). Of all the terms in the integral (14), this one seem

uniquely capable of supplying the expected pressure — but is off by a

factor − 1
2
, to which we’ll return shortly.

Now we consider the first term in the multiple-scattering expansion of

Balian and Bloch:13

G(k, r, r′) − G0 = −2

∫

S

dSq

∂G0(k, r,q)

n̂q

G0(k,q, r′) + · · · . (16)

Liu14 observed that because

T (t, r, r′) =
2

π

∫ ∞

0

e−tkImG(k, r, r′) dk, (17)

it follows that

T − T 0 =
1

4π3

∫

dSq cos θ1

(

1

r1
2(L2 + t2)

+
2L2

r1r2(L2 + t2)2

)

+ · · · (18)

where cos θ1 ≡ (q − r) · n̂q , r1 ≡ |r − q|, r2 ≡ |q − r′|, and L ≡ r1 + r2 .

This formula applies to any surface, not just a sphere. (It can also be
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obtained directly from the single-scattering term in T , in accordance with

the philosophy of Sec. 2.)

.............

.............
...............
.................

......................
................................................................................................................................................................................................................................................................................................................
...................
................
..............
.............
.........• ••....................

....................
....................
....................
.....•

r = r′ qmaxqmin

qhor

Now specialize to the (exterior of the) sphere.14 There are three critical

lengths of paths,

Lmin = 2(r − R), Lmax = 2(r + R), Lhor = 2
√

r2 − R2 . (19)

Paths intersecting the sphere beyond the point of tangency at L = Lhor are

expected to cancel approximately against paths with three reflections, at

least in the optical limit.15

The integral from the visible region (Lmin, Lhor) is

1

4π2a

[

2R

t2 + L2
min

+
1

t

(

tan−1 Lmin

t
− tan−1 Lhor

t

)]

. (20)

The first term here is recognized as the optical approximation to T . The

second term is the predicted arctangent. (It gives a correction of order

O(L−3
min) to the leading term in ρ(r, 0), which is O(L−4

min) with Lmin =

2(r − R) → 0 at the boundary.)

The integral from the shadow region (Lhor, Lmax) is

1

4π2a

[

2R

t2 + L2
max

+
1

t

(

tan−1 Lhor

t
− tan−1 Lmax

t

)]

. (21)

The first term is the optical term from reflection on the far side of the sphere.

Although one expects this term to be compensated by terms with more

reflections, in the full multiple-reflection integral a consistent truncation at

Lhor is not possible, because contributions from L ≈ Lmin are entangled

with those from comparably short 3-reflection paths. Better calculational

technology is needed to get a good handle on these low-frequency details.

To get 〈T µν〉 we need derivatives of T at r′ = r. (Evaluating the inte-

grals for T at r′ 6= r appears hopeless.) After much Mathematica work we

reproduce in the limit of small t

E ∼ − R2

2t3
+

5

192πR
+ O(t2/R3) (22)
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(cf. Eq. (9), whose O(R/t2) term comes from two reflections) and

pr ∼ − 1

8πRt3
+

1

64πR3t
+ O(t0/R4) ; (23)

the (cut-off) radial pressure is finite at the boundary and originates in the

subdominant arctangent term. (So there is no contradiction with [9].)

This is a qualitative resolution of the sphere pressure paradox — but

only qualitative. We found pr ∼ −(8πRt3)−1 but were expecting pr ∼
+(4πRt3)−1. This prompted us to look at flat plates intersecting at right

angles in dimension 3, where we find the same discrepancy − 1
2

! That in turn

forced a reexamination of the 2-dimensional calculation in [1], mentioned

above. It turns out that there the numerical factor is correct but the sign is

wrong. (In dimension n the discrepant factor (for flat plates) is −1/(n−1).)

5. Paradox Future

So, why is the energy-balance equation

∂E

∂h
= −

∫

S

ph (24)

(for general parameter h) violated in the cutoff theory? (Note that a similar,

nonparadoxical, result was found in [16].)

Let us take a critical look at the leading, bulk term in the vacuum

〈T µν(r)〉, which we usually simply throw away. The ultraviolet cutoff yields

T µν =
1

2π2t4
diag(3, 1, 1, 1) ≡ 1

2π2t4
Trad , (25)

proportional to the stress tensor of massless radiation. If we were to take it

seriously, we would note that it is (i) ambiguous, (ii) not Lorentz-invariant,

and (iii) inconsistent with Eq. (24).

As concerns ambiguity, note that elsewhere17 we argued that

T µν ∝ diag(−1, 1, 1,−3) ≡ TCas , (26)

the tensor characteristic of conformally invariant Casimir energy18 (which

happens to be invariant under Lorentz transformations parallel to the x–

y plane). In that calculation the three space-time directions (t, x, y) were

treated alike, but differently from z. Effectively, we used a kz cutoff instead

of a frequency cutoff.

This problem was confronted in the early years of quantum field theory

in curved space-time.5,19–21 In particular, Christensen5 calculated the bulk

vacuum stress tensor

T µν =
1

2π2t4
(

gµν − 4 uµuνsgn(uρu
ρ)

)

, (27)
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where uµ was the unit 4-vector in the direction of “point separation”.

Trad corresponds to point-splitting in the time direction, TCas to point-

splitting in the direction of a certain spatial coordinate. In the gravita-

tional context it was taken as self-evident that a physically acceptable term

of zeroth order in curvature must be covariant and hence proportional to

Tdark ≡ diag(−1, 1, 1, 1) (28)

(i.e., to the metric tensor). It can then be absorbed by renormalization of

the cosmological constant. Various rationalizations of this step appeared in

the literature. Zel’dovich19 advocated Pauli–Villars regularization, which

maintains Lorentz invariance at all times. Adler et al. and Christensen20,21

proposed to average over u (getting 0 for massless fields). Others just “renor-

malized” direction-dependent terms, resolving any ambiguity by requiring

∇µT µν = 0 (conservation) for the remainder.

Unlike Trad and TCas , Tdark satisfies Eq. (24). Note that the latter does

not automatically follow from ∇µT µν = 0 for the material inside a con-

tainer; it requires also an equation of state that is consistent with what ac-

tually happens to the “matter” when the volume of the container changes.

For bulk vacuum energy, nothing happens, so only the dark-energy equation

of state, p = −ρ, is allowed.

The lesson seems to be that a cutoff model is not a complete, consistent

dynamical system, so formal properties such as covariance, conservation,

and energy balance may be disrupted and need to be restored ad hoc.

In standard static Casimir problems, we have a rest frame, so this di-

rection dependence has always been ignored. Now we see that the issue

reemerges in the cutoff-dependent terms near boundaries. There is no ap-

parent physical reason why point-splitting in the time direction should be

preferred. Modeling of a real conductor suggests that a wave-number cutoff

in directions parallel to the boundary may be more appropriate,4 and what

is appropriate for the energy may not be so for the pressure.22

Numerically, the energy-balance equation (in particular, the sign) for

rectangular boxes is disrupted because, for timelike point-splitting, the

graph of the cut-off energy density displays a dip (∗) at the boundary that

does not occur in the pressure function:

(schematic)

z

ρ

∗
.................
...............
..............
..............
..............
..............
................
....................
.....................................................................................................................................................................................................................................

...............................
...........

...← t = 0, or pr

← t 6= 0
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But it was precisely that dip that restored consistency with the integrated

energy, resolving the first of the three paradoxes! Therefore, it may be that

the famous formula

E(t) ∼ c0V t−4 + c1St−3 + · · · (29)

is totally meaningless as far as cutoff-dependent terms are concerned. In

future work the full variety of possible cutoffs needs to be investigated in

search of formal consistency of stress tensor components as well as physical

plausibility in comparison with particular real boundary interactions.
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