The Hamilton–Jacobi Equation, Semiclassical Asymptotics, and Stationary Phase

Main source: A. Uribe, Cuernavaca Lectures, Appendices B and C and parts of Section 2 (first item on our Background Reading page)

STATIONARY PHASE

Consider $I(t) \equiv \int_{\mathbf{R}^n} e^{it\phi(x)} a(x) dx$, ϕ smooth and real-valued ($\phi \in C^{\infty}_{\mathbf{R}}(\mathbf{R}^n)$), a smooth and compactly supported ($a \in C^{\infty}_0(\mathbf{R}^n)$), $t \to +\infty$. (No vector boldface this time; n may not be d.) Intuition: I is very small for large t, because the integrand oscillates rapidly — except in regions where ϕ is nearly constant!

Definition: Points of stationary phase are critical points of ϕ ($\nabla \phi(x_0) = 0$).

$$I(t) \equiv \int_{\mathbf{R}^n} e^{it\phi(x)} a(x) \, dx, \qquad \nabla \phi(x_0) = 0.$$

Nonstationary Phase Theorem. If ϕ has no critical points in a neighborhood of supp a (i.e., a = 0 at and near any x_0), then $I(t) = O(t^{-N})$ for any N.

PROOF: Integrate by parts forever! ($\chi = \text{cutoff.}$)

$$ae^{it\phi} = \frac{a}{it} L(e^{it\phi}) \quad \text{where} \quad L \equiv \frac{\chi}{|\nabla \phi|^2} \nabla \phi \cdot \nabla;$$
$$I(t) = \int ae^{it\phi} dx = \frac{i}{t} \int e^{it\phi} L^t a \, dx,$$

an integral of same form. Repeat to get $\frac{1}{t^N}$.

Corollary $(\phi(x) = k \cdot x)$: The Fourier transform of a smooth function is a function of rapid decrease.

Remark: Compact support is too strong; all we need is that all endpoint terms vanish. But smoothness of a and ϕ is fundamental.

$$I(t) \equiv \int_{\mathbf{R}^n} e^{it\phi(x)} a(x) \, dx, \qquad \nabla \phi(x_0) = 0.$$

Stationary Phase Theorem (quadratic case). Consider $\phi(x) = \frac{1}{2}x \cdot Ax$, det $A \neq 0$; $x_0 = 0$. Then

$$I(t) \sim \left(\frac{2\pi}{t}\right)^{n/2} \frac{e^{i\pi\sigma/4}}{\sqrt{|\det A|}} \sum_{j=0}^{\infty} b_j(a)(0)t^{-j},$$

where b_j is a differential operator of order 2j ($b_0 = 1$) and σ is the signature of A (number of positive eigenvalues minus number of negative eigenvalues).

PROOF: Go to a frame where A is diagonal and treat each dimension separately: For $A \in \mathbf{R}$, A > 0, $\mu > 0$,

$$\int e^{-\mu Ax^2/2} a(x) \, dx = \frac{1}{\sqrt{2\pi\mu A}} \int e^{-k^2/2\mu A} \hat{a}(k) \, dk$$

(by Parseval's equation and the Gaussian Fourier transform formula). Since \hat{a} has rapid decrease, we can analytically continue to $\mu = -it$, t > 0:

$$\int e^{itAx^2/2} a(x) \, dx = \frac{e^{i\pi/4}}{\sqrt{2\pi t|A|}} \int e^{-ik^2/2tA} \hat{a}(k) \, dk.$$

For A < 0 you get $e^{-i\pi/4}$ instead. So in dimension n

$$I(t) = \int e^{itx \cdot Ax/2} a(x) \, dx$$

= $\frac{e^{i\pi\sigma/4}}{(2\pi t)^{n/2}\sqrt{|\det A|}} \int e^{-ik \cdot A^{-1}k/2t} \hat{a}(k) \, dk.$

Expand

$$e^{-ik \cdot A^{-1}k/2t} \sim 1 - t^{-1}k \cdot A^{-1}k/2 + \dots + t^{-j}O(k^{2j}) + \dots$$

and interpret *j*th term as Fourier representation of some 2jth derivatives of a(x) evaluated at 0.

Remark: The series (usually) does not converge, but it is asymptotic: the remainder after N terms is $O(t^{-N-1})$.

Remark: For an integral over a finite interval there will be additional terms coming from the endpoints. More generally, if a(x) is only piecewise smooth there will be extra terms associated with each singularity.

Definitions: Critical point x_0 is nondegenerate if

$$\operatorname{Hess}_{x_0} \phi \equiv \det\left(\frac{\partial^2 \phi}{\partial x_i \, \partial x_j}(x_0)\right) \neq 0.$$

(Also use $\operatorname{Hess}_{x_0} \phi$ for the matrix itself.)

Morse's Lemma. In the vicinity of a nondegenerate critical point one can choose coordinates so that

$$\phi(x(y)) = \phi(x_0) + \frac{1}{2} \sum_{j=1}^{n} \Lambda_j y_j^2$$

 $(\Lambda_j \text{ being the eigenvalues of } \operatorname{Hess}_{x_0} \phi).$

Note: No " $+ O(y^3)$ ". Cf. mean value theorem f(x) = f(0) + f'(c)xvs. Taylor's theorem $f(x) = f(0) + f'(0)x + O(x^2)$. SKETCH OF PROOF: Use multidimensional Taylor's theorem with remainder (in integral form) to write $\phi(x) = \phi(x_0) + \frac{1}{2}(x - x_0) \cdot H(x)(x - x_0)$ for some H(x). Then use implicit function theorem on the mapping of matrices $M \mapsto M^t(\text{Hess}_{x_0} \phi)M$ to write $H(x) = M(H(x))^t(\text{Hess}_{x_0} \phi)M(H(x))$ and hence $y \equiv M(H(x))(x - x_0)$.

$$I(t) \equiv \int_{\mathbf{R}^n} e^{it\phi(x)} a(x) \, dx, \qquad \nabla \phi(x_0) = 0.$$

Put together the three theorems to get:

Stationary Phase Theorem. Assume $\phi \in C^{\infty}_{\mathbf{R}}(\mathbf{R}^n)$, $a \in C^{\infty}_{0}(\mathbf{R}^n)$, and the only critical points of ϕ in some neighborhood of supp *a* are nondegenerate (and hence isolated); call them x_{01}, \ldots, x_{0K} . Then as $t \to \infty$

$$I(t) \sim \left(\frac{2\pi}{t}\right)^{n/2} \sum_{k=1}^{K} \frac{e^{i\pi\sigma_k/4} e^{it\phi(x_{0k})}}{\sqrt{|\operatorname{Hess}_{x_{0k}}\phi|}} \\ \times \left[a(x_{0k}) + \sum_{j=1}^{\infty} b_j^k(a)(x_{0k})t^{-j}\right],$$

where b_j^k are certain PDOs and σ_k is the signature of $\operatorname{Hess}_{x_{0k}} \phi$.

See (for instance) S. Zelditch, math.SP/0111078, for a Feynman-diagram algorithm for b_i^k .

Remark: Often in practice the critical points are not isolated. Instead, there may be a whole submanifold \mathcal{T} of critical points, with Hess ϕ degenerate in directions tangent to \mathcal{M} . But if it's nondegenerate in the normal directions one can apply stationary phase in those directions and integrate the result over \mathcal{T} .

HAMILTONIAN CLASSICAL MECHANICS

Let $H(\mathbf{x}, \mathbf{p})$ be a (smooth) real-valued function defined on [a subset of, or manifold like] \mathbf{R}^{2d} (phase space). Usually, H is a second-degree polynomial in \mathbf{p} . Main example:

$$H(\mathbf{x}, \mathbf{p}) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}).$$

Then

$d\mathbf{x}$	$\underline{\partial H}$	$d\mathbf{p}$ _	∂H
dt	$\overline{\partial \mathbf{p}}$,	\overline{dt} –	$\overline{\partial \mathbf{x}}$

is a first-order ODE system with solutions (Hamiltonian flow)

$$(\mathbf{x}(t), \mathbf{p}(t)) = \Phi_t(\mathbf{x}_0, \mathbf{p}_0)$$

for initial data $(\mathbf{x}(t), \mathbf{p}(t)) = (\mathbf{x}_0, \mathbf{p}_0).$

All this is equivalent to a Newtonian equation of motion (second-order ODE for \mathbf{x}) plus a definition of \mathbf{p} in terms of $\dot{\mathbf{x}}$ (or vice versa).

Energy is conserved:

$$\frac{d}{dt}H(\mathbf{x}(t),\mathbf{p}(t)) = \frac{\partial H}{\partial \mathbf{x}}\frac{d\mathbf{x}}{dt} + \frac{\partial H}{\partial \mathbf{p}}\frac{d\mathbf{p}}{dt} = 0.$$

So $H(\mathbf{x}(t), \mathbf{p}(t)) \equiv E$.

Two PDEs associated with H

Schrödinger equation (2nd order, linear): Replace \mathbf{p} by $-i\hbar\nabla$, E by $+i\hbar\frac{\partial}{\partial t}$.

$$i\hbar \frac{\partial u}{\partial t} = Hu \doteq -\frac{\hbar^2}{2m} \nabla^2 u + Vu.$$

Time-independent version: $-\frac{\hbar^2}{2m}\nabla^2 u + Vu = Eu.$

Hamilton–Jacobi equation (1st order, nonlinear): Replace \mathbf{p} by ∇S , E by $-\frac{\partial S}{\partial t}$, where $S(t, \mathbf{x})$ is the unknown.

$$-\frac{\partial S}{\partial t} = H(\mathbf{x}, \nabla S) \doteq \frac{|\nabla S|^2}{2m} + V(\mathbf{x}).$$

Time-independent version: $H(\mathbf{x}, \nabla S) = E$.

Semiclassical ansatz: $u(t, \mathbf{x}) = A(t, \mathbf{x}; \hbar) e^{iS(t, \mathbf{x})/\hbar},$ $\hbar \to 0$, later $A \sim A_0 + \hbar A_1 + \hbar^2 A_2 + \cdots$. You get

$$0 \doteq A \left[\frac{\partial S}{\partial t} + \frac{1}{2m} |\nabla S|^2 + V \right]$$
$$- i\hbar \left[\frac{\partial A}{\partial t} + \frac{1}{m} \nabla A \cdot \nabla S + \frac{1}{2m} A \nabla^2 S \right] - \frac{\hbar^2}{2m} \nabla^2 A.$$

So solving HJ is first step in an \hbar expansion.

RELATION BETWEEN HJ AND CLASSICAL MECHANICS (1) Assume we have a (local) solution of HJ,

$$-\frac{\partial S(t,\mathbf{x})}{\partial t} = H(\mathbf{x},\nabla S(t,\mathbf{x})),$$

and a (local) curve $\mathbf{x}(t)$ satisfying

$$\frac{d\mathbf{x}}{dt} = \frac{\partial H}{\partial \mathbf{p}} \Big(\mathbf{x}(t), \nabla S\big(t, \mathbf{x}(t)\big) \Big) \doteq \frac{1}{m} \nabla S\big(t, \mathbf{x}(t)\big).$$

Then $(\mathbf{x}(t), \nabla S(t, \mathbf{x}(t)))$ is a trajectory of the Hamiltonian flow (with $\mathbf{p}(t) = \nabla S(t, \mathbf{x}(t))$).

PROOF: $\frac{d\mathbf{x}}{dt} = \frac{\partial H}{\partial \mathbf{p}}$ is satisfied by assumption. Why $\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{x}}$? Calculate

$$\frac{dp_i}{dt} = \frac{\partial^2 S}{\partial t \,\partial x_i} + \sum_j \frac{\partial^2 S}{\partial x_j \,\partial x_i} \,\frac{dx_j}{dt}$$

And differentiate HJ:

$$\frac{\partial^2 S}{\partial x_i \, \partial t} = -\frac{\partial H}{\partial x_i} - \sum_j \frac{\partial H}{\partial p_j} \frac{\partial^2 S}{\partial x_i \, \partial x_j}$$

Compare: $\frac{dp_i}{dt} =$

$$=-rac{\partial H}{\partial x_i}$$
.

Corollary: Entrance of the Lagrangian.

$$\frac{d}{dt}S(t,\mathbf{x}(t)) = \frac{\partial S}{\partial t} + \dot{\mathbf{x}} \cdot \nabla S = -H + \dot{\mathbf{x}} \cdot \mathbf{p} \equiv L(\mathbf{x}(t), \dot{\mathbf{x}}(t)).$$

(2) Conversely, assume we know the flow Φ_t . The previous corollary suggests that we should get solutions of HJ by integrating L along the trajectories. Indeed, for given $(t, \mathbf{x}, \mathbf{x}_0)$ in a sufficiently small neighborhood in \mathbf{R}^{1+2d} , the two-point boundary problem

$$\mathbf{x}(0) = \mathbf{x}_0 \,, \quad \mathbf{x}(t) = \mathbf{x}$$

for the (Newtonian) equation of motion will have a unique solution $\mathbf{x}(t)$. Define

$$S(t, \mathbf{x}; \mathbf{x}_0) = \int_0^t L(\mathbf{x}(u), \dot{\mathbf{x}}(u)) \, du.$$

Then S solves HJ. (Note that arbitrary initial data $S_0(\mathbf{x}_0)$ could be added.)

PROOF: is somewhat complicated. See

- Arnold, Mathematical Methods of Classical Mechanics, pp. 253–258 with pp. 233–237.
- Molzahn et al., Ann. Phys. (NY) **214** (1992), Appendix A.

Corollary: Initial and final momenta.

$$\mathbf{p}(t) = \nabla_{\mathbf{x}} S(t, \mathbf{x}; \mathbf{x}_0).$$

By symmetry,

$$\mathbf{p}(0) = -\nabla_{\mathbf{x}_0} S(t, \mathbf{x}; \mathbf{x}_0) \qquad [+\nabla S_0(\mathbf{x}_0), \text{in general}].$$

(3) Return to (1) and assume we have a parametrized family of (local) solutions of HJ, $S(t, \mathbf{x}; \mathbf{p}_0)$, such that $S(0, \mathbf{x}; \mathbf{p}_0) = \mathbf{x} \cdot \mathbf{p}_0$. Then any flow trajectory, $(\mathbf{x}(t), \mathbf{p}(t))$, running through the domain of S is of the form described in (1), with $\mathbf{p}(0) = \mathbf{p}_0$.

PROOF: Define $\tilde{\mathbf{x}}(t)$ by

$$\frac{d\tilde{\mathbf{x}}(t)}{dt} = \frac{\partial H}{\partial \mathbf{p}} \Big(\tilde{\mathbf{x}}(t), \nabla S\big(t, \tilde{\mathbf{x}}(t); \mathbf{p}(0)\big) \Big), \quad \tilde{\mathbf{x}}(0) = \mathbf{x}(0),$$

and define $\tilde{\mathbf{p}}(t) = \nabla S(t, \tilde{\mathbf{x}}(t); \mathbf{p}(0))$. By (1), $(\tilde{\mathbf{x}}, \tilde{\mathbf{p}})$ is a trajectory. Its initial data are $(\mathbf{x}(0), \mathbf{p}(0))$, because $\tilde{\mathbf{p}}(0) = \nabla S(0, \tilde{\mathbf{x}}(0); \mathbf{p}(0)) = \nabla_{\mathbf{x}(0)}[\mathbf{x}(0) \cdot \mathbf{p}(0)] = \mathbf{p}(0)$. Therefore, $(\tilde{\mathbf{x}}, \tilde{\mathbf{p}}) = (\mathbf{x}, \mathbf{p})$ for all t, since trajectory is unique.

Remark: In the context of (2), these solutions are those with $S_0(\mathbf{x}_0) = \mathbf{x}_0 \cdot \mathbf{p}_0$. It follows that

$$\mathbf{p}(0) = -\nabla_{\mathbf{x}_0} S(t, \mathbf{x}; \mathbf{p}_0) + \nabla S_0(\mathbf{x}_0)$$
$$= -\nabla_{\mathbf{x}_0} S(t, \mathbf{x}; \mathbf{p}_0) + \mathbf{p}_0,$$

but we know $\mathbf{p}(0) = \mathbf{p}_0$, so $\nabla_{\mathbf{x}_0} S(t, \mathbf{x}; \mathbf{p}_0) = 0$, as the notation implies.

(4) Let's be more precise about the two-point boundary problem. We have a flow

$$\Phi_t(\mathbf{x}_0, \mathbf{p}_0) = (\mathbf{x}, \mathbf{p}) \equiv \big(\mathbf{x}(t, \mathbf{x}_0, \mathbf{p}_0), \mathbf{p}(t, \mathbf{x}_0, \mathbf{p}_0)\big).$$

Assume that for each (t, \mathbf{p}_0) in some open set the map $\mathbf{x}_0 \mapsto \mathbf{x}(t, \mathbf{x}_0, \mathbf{p}_0)$ is a diffeomorphism, so it has inverse $\mathbf{x} \mapsto \mathbf{x}_0(t, \mathbf{x}, \mathbf{p}_0)$. In words, \mathbf{x}_0 is the initial position of a particle of initial momentum \mathbf{p}_0 that at time tarrives at \mathbf{x} . (In (2) the roles of \mathbf{x}_0 and \mathbf{p}_0 were interchanged.) We now claim

$$\mathbf{x}_0(t, \mathbf{x}, \mathbf{p}_0) = \nabla_{\mathbf{p}_0} S(t, \mathbf{x}; \mathbf{p}_0).$$

PROOF: Write the claim as

$$\mathbf{x}_0(t, \mathbf{x}, \mathbf{p}_0) = \nabla_{\mathbf{p}_0} S(t, \mathbf{x}(t, \mathbf{x}_0, \mathbf{p}_0); \mathbf{p}_0).$$

It holds at t = 0:

$$\nabla_{\mathbf{p}_0} S(0, \mathbf{x}(0); \mathbf{p}_0) = \nabla_{\mathbf{p}_0} [\mathbf{x}_0 \cdot \mathbf{p}_0] = \mathbf{x}_0 \,.$$

Therefore, it holds for all t, because the derivative of the expression vanishes, by calculation like that in (1):

$$\frac{dx_{0i}}{dt} = \frac{\partial^2 S}{\partial t \,\partial p_i} + \sum_j \frac{\partial^2 S}{\partial x_j \,\partial p_i} \,\frac{dx_j}{dt} \,,$$

but differentiating HJ yields

$$\frac{\partial^2 S}{\partial p_i \, \partial t} = -\sum_j \frac{\partial H}{\partial p_j} \, \frac{\partial^2 S}{\partial p_i \, \partial x_j} \,,$$

and it all cancels.

Recapitulation

 $S(t, \mathbf{x}; \mathbf{x}_0) = \int_0^t L$ satisfies

 $\mathbf{p} = \nabla_{\mathbf{x}} S(t, \mathbf{x}; \mathbf{x}_0), \quad \mathbf{p}_0 = -\nabla_{\mathbf{x}_0} S(t, \mathbf{x}; \mathbf{x}_0).$

In the language of Goldstein, Classical Mechanics, $-S(t, \mathbf{x}; \mathbf{x}_0)$ is a generating function of type F_1 for Φ_t regarded as a canonical transformation from the old variables $(\mathbf{x}_0, \mathbf{p}_0)$ to the new variables (\mathbf{x}, \mathbf{p}) .

 $S(t, \mathbf{x}; \mathbf{p}_0) = \int_0^t L + \mathbf{x}_0 \cdot \mathbf{p}_0$ (which is actually independent of \mathbf{x}_0 and has initial data $S(0, \mathbf{x}; \mathbf{p}_0) = \mathbf{x} \cdot \mathbf{p}_0$) satisfies

$$\mathbf{p} = \nabla_{\mathbf{x}} S(t, \mathbf{x}; \mathbf{p}_0), \quad \mathbf{x}_0 = \nabla_{\mathbf{p}_0} S(t, \mathbf{x}; \mathbf{p}_0).$$

So $-S(t, \mathbf{x}; \mathbf{p}_0)$ is a generating function of type F_3 for Φ_t .

Remark: Therefore, contrary to appearance, $S(t, \mathbf{x}; \mathbf{x}_0)$ does not approach 0 as $t \to 0$ if $\mathbf{x} \neq \mathbf{x}_0$. The reason is that if the particle gets from \mathbf{x}_0 to \mathbf{x} in a very short time, then L is very large!

$$S(0,\mathbf{x};\mathbf{x}_0) = (\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{p}_0$$
.

THE TRANSPORT EQUATION

Recall that to solve the Schrödinger equation (for $H = \frac{\mathbf{p}^2}{2m} + V$) through order \hbar^1 we need to solve

$$\frac{\partial A}{\partial t} + \frac{1}{m}\nabla A \cdot \nabla S + \frac{1}{2m}A\nabla^2 S = 0.$$

But because S solves HJ, we have

$$\nabla S = \mathbf{p} \doteq m \dot{\mathbf{x}}.$$

Therefore,

$$\left(\frac{\partial}{\partial t} + \frac{1}{m}\nabla S \cdot \nabla\right) A = \left(\frac{\partial}{\partial t} + \dot{\mathbf{x}} \cdot \nabla\right) A = \frac{dA}{dt} (\mathbf{x}(t)),$$

and we can solve for $\ln A$ (actually, $\ln A_0$) by integrating along the classical trajectories!

$$A_0(\mathbf{x}) = \exp\left[-\frac{1}{2m}\int_0^t \nabla^2 S(u, \mathbf{x}(u)) \, du\right]$$

(where $\mathbf{x}(0) = \mathbf{x}_0$, $\mathbf{x}(t) = \mathbf{x}$). Higher-order terms $\hbar^n A_n$ can be calculated in the same way.

Alternative solution: Van Vleck determinant.

$$A_0(\mathbf{x}) = \sqrt{|\det \nabla_{\mathbf{x}} \nabla_{\mathbf{x}_0} S|}.$$

This determinant becomes infinite at places \mathbf{x} where the flow ceases to be a diffeomorphism (trajectories emerging from \mathbf{x}_0 intersect for the first time).