The Hamilton—Jacobi Equation,
Semiclassical Asymptotics,
and Stationary Phase

Main source: A. Uribe, Cuernavaca Lectures,
Appendices B and C and parts of Section 2

(first item on our Background Reading page)

STATIONARY PHASE

Consider [(t)z/ @) q(z) du,
R

¢ smooth and real-valued (¢ € Cg(R")), a smooth
and compactly supported (a € C§°(R")), t — +00.
(No vector boldface this time; n may not be d.)

Intuition: I is very small for large ¢, because the inte-
grand oscillates rapidly — except in regions where ¢ is
nearly constant!

Definition: Points of stationary phase are critical

points of ¢  (Vo(zg) = 0).



I(t) = /n @) q(z) du, Vo(xzg) = 0.

Nonstationary Phase Theorem. If ¢ has no criti-
cal points in a neighborhood of suppa (i.e., a = 0 at
and near any x), then I(t) = O(t~) for any N.

PROOF: Integrate by parts forever! (y = cutoff.)

& 7 oitd _ _X
itL(e ) where L_\Vcb\Q

I(t) = /aeit"5 dr = %/eit‘bLta dz,

ae't? =

Vo -V;

an integral of same form. Repeat to get N

Corollary (¢(x) = k- x): The Fourier transform of a
smooth function is a function of rapid decrease.

Remark: Compact support is too strong; all we need
is that all endpoint terms vanish. But smoothness of
a and ¢ is fundamental.



I(t) = /n @) q(z) du, Vo(xzg) = 0.

Stationary Phase Theorem (quadratic case).
Consider ¢(z) = 3z - Az, det A #0; 9 = 0. Then

2770/4 >

27

I(t) ~ (7)”/ \/mz

where b; is a differential operator of order 2j (bg = 1)
and o is the signature of A (number of positive eigen-
values minus number of negative eigenvalues).

PROOF: Go to a frame where A is diagonal and treat
each dimension separately: For A€ R, A >0, u > 0,

/e_“Ax2/2a(a:) dr =

—R20A4 (k) dk
\/27T,LL ()

(by Parseval’s equation and the Gaussian Fourier
transform formula). Since a has rapid decrease, we
can analytically continue to u = —it, t > O:

6171'/4

V/ 2mt| A

/e”Amg/Qa(a;) dx = e_ikQ/QtAd(k) dk.
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For A < 0 you get e instead. So in dimension n

I(t) = /eitx'Ax/2a(a:) dx

6171'0/4

— (&
(21t)7/2, /] det A|

—ik-A_lk/2t&(k) dk.

Expand
o~k AT R/2t 1 _ =11, A_lk/2—|— . _|_t—j0(k2j) 1.

and interpret jth term as Fourier representation of
some 2jth derivatives of a(x) evaluated at 0.

Remark: The series (usually) does not converge,
but it is asymptotic: the remainder after N terms is
Ot=N-1).

Remark: For an integral over a finite interval there
will be additional terms coming from the endpoints.
More generally, if a(x) is only piecewise smooth there
will be extra terms associated with each singularity.



Definitions: Critical point xy is nondegenerate it

2
Hess,, ¢ = det ((9:2 g;j (azo)) # 0.

(Also use Hess,, ¢ for the matrix itself.)

Morse’s Lemma. In the vicinity of a nondegenerate
critical point one can choose coordinates so that

$e(y) = Blzo) + 53 D Ay’

(A; being the eigenvalues of Hessy, ¢).

Note: No “+ O(y>)”. Cf.

mean value theorem  f(x) = f(0) + f'(c)x

vs. Taylor’s theorem  f(z) = £(0) + f'(0)x + O(x?).
SKETCH OF PROOF: Use multidimensional Taylor’s
theorem with remainder (in integral form) to write
d(z) = ¢(xo) + 3(x — xo) - H(z)(z — x0) for some
H(x). Then use implicit function theorem on the
mapping of matrices M +— M* (Hessxo qb)M to write
H(z) = M(H(z))"(Hessy, ¢) M (H(z)) and hence
y=M(H(x))(x — xq).



I(t) = /n @) q(z) du, Vo(xzg) = 0.

Put together the three theorems to get:

Stationary Phase Theorem. Assume ¢ € Cg (R"),
a € C§°(R™), and the only critical points of ¢ in some
neighborhood of supp a are nondegenerate (and hence
isolated); call them xq1,...,Torx. Then ast — oo

2 n/2 K eiwak/4eit¢(a;0k)
I(t) ~ | —
t =1 V| Hessey, 9

[ a\ Lok +Zb CCOk ]7

where bé‘? are certain PDOs and o} is the signature of
Hessy,, ¢.

See (for instance) S. Zelditch, math.SP/0111078, for a
Feynman-diagram algorithm for b? :

Remark: Often in practice the critical points are not
isolated. Instead, there may be a whole submanifold
T of critical points, with Hess ¢ degenerate in direc-
tions tangent to M. But if it’s nondegenerate in the
normal directions one can apply stationary phase in
those directions and integrate the result over 7.



HAMILTONIAN CLASSICAL MECHANICS

Let H(x,p) be a (smooth) real-valued function de-
fined on [a subset of, or manifold like] R?¢ (phase
space). Usually, H is a second-degree polynomial
in p. Main example:

2

|y
H = — .
xp) = 2 4 v
Then
ix_oH  dp_ oH
dt Op’ dt  0x

is a first-order ODE system with solutions
(Hamiltonian flow)

(X(t)ap(t)) = &, (%0, Po)

for initial data (x(t), p(t)) = (%0, Po).

All this is equivalent to a Newtonian equation of mo-
tion (second-order ODE for x) plus a definition of p
in terms of x (or vice versa).

Energy is conserved:

d
%H(x(t),

_OH dx  OH dp _

) =%x at Top ar ="

o

So H(x(t),p(t)) = E.



TwOo PDES ASSOCIATED WITH H

Schrodinger equation (2nd order, linear):
Replace p by —ihV, E by +ih% :

ou h2

h— = Hu=— —V?u+ Vu.
? 5 U 2mv u+ Vu
72
Time-independent version: — 2—V2u + Vu = Fu.
m

Hamilton—Jacobi equation (1st order, nonlinear):
Replace p by VS, E by —22  where S(t,x) is the un-
known.

_05
ot

Time-independent version: H(x,VS) = E.

= H(x,VS) = VS + V(x).

2m

Semiclassical ansatz:  u(t,x) = A(t,x; h)eS X/
h — 0, later A ~ Ay + hA; + h2As +---. You get

oS 1
A== 4 2
0 [8t+2mNS| +V]
A 1 1 2
—ih [8— + —VA.-VS+ — AV2S] — — V?A.
ot m 2m 2m

So solving HJ is first step in an h expansion.



RELATION BETWEEN HJ AND CLASSICAL MECHANICS

(1) Assume we have a (local) solution of HJ,

— 855;5 X) = H(x,VS(t,x)),
and a (local) curve x(t) satisfying

= S (x(0. VS (tx(9)) = S (t.x(1).

Then (X(t), VS(t, X(t))) is a trajectory of the Hamil-

tonian flow (with p(t) = VS (¢,x(¢)) ).

PROOF: Ccll—}t‘ = %—g is satisfied by assumption. Why

dp _ __0H 9
= -5 Calculate

dt
dp; 98 025  da,

&t 010w, 20w, 0m dt

J

And differentiate HJ:

0%S o oOH B OH 0°S
6’:@ 6’75 - 8:1:@ ; 6’pj 6’:(:1 8:1:]- .
Compare api oH
mpare: = — :

b dt (9513@
Corollary: Entrance of the Lagrangian.
d 0S
ES(t,x(lt)) = 5 % VS =-Hixp= L(x(t),x(t)).



(2) Conversely, assume we know the flow ®;. The pre-
vious corollary suggests that we should get solutions
of HJ by integrating L along the trajectories. Indeed,
for given (t,x,x() in a sufficiently small neighborhood
in R'2¢ the two-point boundary problem

x(0) =x9, x(t)=x

for the (Newtonian) equation of motion will have a
unique solution x(t¢). Define

S(t,x;xo):/O L(x(u), x(u)) du.

Then S solves HJ. (Note that arbitrary initial data
So(xg) could be added.)

PROOF: is somewhat complicated. See

e Arnold, Mathematical Methods of Classical
Mechanics, pp. 253—258 with pp. 233-237.

e Molzahn et al., Ann. Phys. (NY) 214 (1992),
Appendix A.

Corollary: Initial and final momenta.
p(t) = VxS(t,x;x0).
By symmetry,
pP(0) = =V, S(t, x;%0) |+ VSy(x0),in general].
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(3) Return to (1) and assume we have a parametrized
family of (local) solutions of HJ, S(¢,x; pg), such that
S(0,x;pg) = x-po. Then any flow trajectory,
(x(¢),p(t)), running through the domain of S is of the
form described in (1), with p(0) = pg .

PROOF: Define x(t) by

B O (50), VS (1. x(0:p(0) ). %(0) = x(0),

dt op
and define p(¢t) = VS(¢,x(¢); p(0)). By (1), (Xx,p) is
a trajectory. Its initial data are (x(0), p(0)), because

p(0) = VS(0,%(0);p(0)) = Vx(0)[x(0) - p(0)] = p(0).
Therefore, (x,p) = (x,p) for all ¢, since trajectory is
unique.

Remark: In the context of (2), these solutions are
those with Sp(xg) = x¢ - pg- It follows that

P(0) = =V, S(t,x;po) + VSo(x0)
— _vxos(ta X, pO) + Po ,

but we know p(0) = po, so Vi, 5(t,x;pg) = 0, as the
notation implies.
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(4) Let’s be more precise about the two-point bound-
ary problem. We have a flow

®;(x0, Po) = (X, P) = (x(¢, %0, Po), P, X0, Po))-
Assume that for each (¢, pg) in some open set the map
xo — X(t, X0, Po) is a diffeomorphism, so it has inverse
x — Xqo(t,x,po). In words, X is the initial position
of a particle of initial momentum pg that at time ¢
arrives at x. (In (2) the roles of xy and pg were inter-
changed.) We now claim

XO(ta X, pO) — vpoS(ta X3 pO)
PROOF: Write the claim as

XO(ta X, pO) — VpoS(ta X(ta X0, p0)7 pO) .
It holds at t = 0:

Vie5(0,%(0); Po) = Vi, [X0 - Po] = Xo-
Therefore, it holds for all ¢, because the derivative of
the expression vanishes, by calculation like that in (1):

d[lﬁoq; (925 025 dCL’j

dt ~ Dtlp; | = Dujop; db
but differentiating HJ yields
Z OH 0%S
Op; Op; 0z’

(9]9Z 815

and it all cancels.
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Recapitulation

S(t,x;Xg) = fg L satisfies
P = vX‘S(ta X, X0)7 Po = _vxo S(ta X3 XO)'

In the language of Goldstein, Classical Mechanics,
—S(t,x,;x0) is a generating function of type F; for
®, regarded as a canonical transformation from the
old variables (xg, po) to the new variables (x, p).

S(t,x;po) = fot L + xq - po (which is actually inde-
pendent of xy and has initial data S(0,x;pg) = X - po)
satisfies

P = vX‘S(ta X3 p0)7 X0 = vaS(t, X3 pO)

So —S(t,x;po) is a generating function of type Fj
for (I)t .

Remark: Therefore, contrary to appearance,
S(t,x;xg) does not approach 0 ast — 0 if x # xq.
The reason is that if the particle gets from xg to x in
a very short time, then L is very large!

S(0,x;x0) = (x — Xq) * Po -
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THE TRANSPORT EQUATION

Recall that to solve the Schrodinger equation (for
H = % + V) through order i' we need to solve
0A 1 1
+ —VA - VS+-— AV?S =
ot  m 2m
But because S solves HJ, we have

VS =p =mx.
Therefore,
o 1 o . dA
(§+Evs.v> A= (% —I—X-V) A= E(X(t)),

and we can solve for In A (actually, In Ag) by integrat-
ing along the classical trajectories'

Ap(x) = exp [ / V2S5 (u, x( du]
(where x(0) = xg, x(t) = x). Higher-order terms
R A, can be calculated in the same way.
Alternative solution: Van Vlieck determinant.

Ap(x) = /| det Vi Vi, S| .

This determinant becomes infinite at places x where
the flow ceases to be a diffeomorphism (trajectories
emerging from x intersect for the first time).
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