The Hamilton-Jacobi Equation, Semiclassical Asymptotics, and Stationary Phase

Main source: A. Uribe, Cuernavaca Lectures, Appendices B and C and parts of Section 2 (first item on our Background Reading page)

Stationary Phase

Consider $\quad I(t) \equiv \int_{\mathbf{R}^{n}} e^{i t \phi(x)} a(x) d x$,
ϕ smooth and real-valued $\left(\phi \in C_{\mathbf{R}}^{\infty}\left(\mathbf{R}^{n}\right)\right), a$ smooth and compactly supported ($\left.a \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)\right), t \rightarrow+\infty$. (No vector boldface this time; n may not be d.)
Intuition: I is very small for large t, because the integrand oscillates rapidly - except in regions where ϕ is nearly constant!
Definition: Points of stationary phase are critical points of $\phi \quad\left(\nabla \phi\left(x_{0}\right)=0\right)$.

$$
I(t) \equiv \int_{\mathbf{R}^{n}} e^{i t \phi(x)} a(x) d x, \quad \nabla \phi\left(x_{0}\right)=0
$$

Nonstationary Phase Theorem. If ϕ has no critical points in a neighborhood of $\operatorname{supp} a$ (i.e., $a=0$ at and near any x_{0}), then $I(t)=O\left(t^{-N}\right)$ for any N.

Proof: Integrate by parts forever! ($\chi=$ cutoff. $)$

$$
\begin{gathered}
a e^{i t \phi}=\frac{a}{i t} L\left(e^{i t \phi}\right) \quad \text { where } \quad L \equiv \frac{\chi}{|\nabla \phi|^{2}} \nabla \phi \cdot \nabla \\
I(t)=\int a e^{i t \phi} d x=\frac{i}{t} \int e^{i t \phi} L^{\mathrm{t}} a d x
\end{gathered}
$$

an integral of same form. Repeat to get $\frac{1}{t^{N}}$.
Corollary $(\phi(x)=k \cdot x)$: The Fourier transform of a smooth function is a function of rapid decrease.

Remark: Compact support is too strong; all we need is that all endpoint terms vanish. But smoothness of a and ϕ is fundamental.

$$
I(t) \equiv \int_{\mathbf{R}^{n}} e^{i t \phi(x)} a(x) d x, \quad \nabla \phi\left(x_{0}\right)=0
$$

Stationary Phase Theorem (quadratic case).

Consider $\phi(x)=\frac{1}{2} x \cdot A x$, $\operatorname{det} A \neq 0 ; x_{0}=0$. Then

$$
I(t) \sim\left(\frac{2 \pi}{t}\right)^{n / 2} \frac{e^{i \pi \sigma / 4}}{\sqrt{|\operatorname{det} A|}} \sum_{j=0}^{\infty} b_{j}(a)(0) t^{-j}
$$

where b_{j} is a differential operator of order $2 j\left(b_{0}=1\right)$ and σ is the signature of A (number of positive eigenvalues minus number of negative eigenvalues).

Proof: Go to a frame where A is diagonal and treat each dimension separately: For $A \in \mathbf{R}, A>0, \mu>0$,

$$
\int e^{-\mu A x^{2} / 2} a(x) d x=\frac{1}{\sqrt{2 \pi \mu A}} \int e^{-k^{2} / 2 \mu A} \hat{a}(k) d k
$$

(by Parseval's equation and the Gaussian Fourier transform formula). Since \hat{a} has rapid decrease, we can analytically continue to $\mu=-i t, t>0$:

$$
\int e^{i t A x^{2} / 2} a(x) d x=\frac{e^{i \pi / 4}}{\sqrt{2 \pi t|A|}} \int e^{-i k^{2} / 2 t A} \hat{a}(k) d k
$$

For $A<0$ you get $e^{-i \pi / 4}$ instead. So in dimension n

$$
\begin{aligned}
I(t) & =\int e^{i t x \cdot A x / 2} a(x) d x \\
& =\frac{e^{i \pi \sigma / 4}}{(2 \pi t)^{n / 2} \sqrt{|\operatorname{det} A|}} \int e^{-i k \cdot A^{-1} k / 2 t} \hat{a}(k) d k
\end{aligned}
$$

Expand
$e^{-i k \cdot A^{-1} k / 2 t} \sim 1-t^{-1} k \cdot A^{-1} k / 2+\cdots+t^{-j} O\left(k^{2 j}\right)+\cdots$
and interpret j th term as Fourier representation of some $2 j$ th derivatives of $a(x)$ evaluated at 0 .
Remark: The series (usually) does not converge, but it is asymptotic: the remainder after N terms is $O\left(t^{-N-1}\right)$.
Remark: For an integral over a finite interval there will be additional terms coming from the endpoints. More generally, if $a(x)$ is only piecewise smooth there will be extra terms associated with each singularity.

Definitions: Critical point x_{0} is nondegenerate if

$$
\operatorname{Hess}_{x_{0}} \phi \equiv \operatorname{det}\left(\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}\left(x_{0}\right)\right) \neq 0
$$

(Also use $\operatorname{Hess}_{x_{0}} \phi$ for the matrix itself.)
Morse's Lemma. In the vicinity of a nondegenerate critical point one can choose coordinates so that

$$
\phi(x(y))=\phi\left(x_{0}\right)+\frac{1}{2} \sum_{j=1}^{n} \Lambda_{j} y_{j}^{2}
$$

(Λ_{j} being the eigenvalues of $\operatorname{Hess}_{x_{0}} \phi$).
Note: No " $+O\left(y^{3}\right)$ ". Cf.
mean value theorem $\quad f(x)=f(0)+f^{\prime}(c) x$
vs. Taylor's theorem $\quad f(x)=f(0)+f^{\prime}(0) x+O\left(x^{2}\right)$.
Sketch of proof: Use multidimensional Taylor's theorem with remainder (in integral form) to write $\phi(x)=\phi\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right) \cdot H(x)\left(x-x_{0}\right)$ for some $H(x)$. Then use implicit function theorem on the mapping of matrices $M \mapsto M^{\mathrm{t}}\left(\operatorname{Hess}_{x_{0}} \phi\right) M$ to write $H(x)=M(H(x))^{\mathrm{t}}\left(\operatorname{Hess}_{x_{0}} \phi\right) M(H(x))$ and hence $y \equiv M(H(x))\left(x-x_{0}\right)$.

$$
I(t) \equiv \int_{\mathbf{R}^{n}} e^{i t \phi(x)} a(x) d x, \quad \nabla \phi\left(x_{0}\right)=0
$$

Put together the three theorems to get:
Stationary Phase Theorem. Assume $\phi \in C_{\mathbf{R}}^{\infty}\left(\mathbf{R}^{n}\right)$, $a \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$, and the only critical points of ϕ in some neighborhood of $\operatorname{supp} a$ are nondegenerate (and hence isolated); call them $x_{01}, \ldots, x_{0 K}$. Then as $t \rightarrow \infty$

$$
\begin{aligned}
I(t) \sim\left(\frac{2 \pi}{t}\right)^{n / 2} & \sum_{k=1}^{K} \frac{e^{i \pi \sigma_{k} / 4} e^{i t \phi\left(x_{0 k}\right)}}{\sqrt{\left|\operatorname{Hess}_{x_{0 k}} \phi\right|}} \\
& \times\left[a\left(x_{0 k}\right)+\sum_{j=1}^{\infty} b_{j}^{k}(a)\left(x_{0 k}\right) t^{-j}\right]
\end{aligned}
$$

where b_{j}^{k} are certain PDOs and σ_{k} is the signature of Hess $_{x_{0 k}} \phi$.
See (for instance) S. Zelditch, math.SP/0111078, for a Feynman-diagram algorithm for b_{j}^{k}.
Remark: Often in practice the critical points are not isolated. Instead, there may be a whole submanifold \mathcal{T} of critical points, with Hess ϕ degenerate in directions tangent to \mathcal{M}. But if it's nondegenerate in the normal directions one can apply stationary phase in those directions and integrate the result over \mathcal{T}.

Hamiltonian classical mechanics

Let $H(\mathbf{x}, \mathbf{p})$ be a (smooth) real-valued function defined on [a subset of, or manifold like] $\mathbf{R}^{2 d}$ (phase space). Usually, H is a second-degree polynomial in \mathbf{p}. Main example:

$$
H(\mathbf{x}, \mathbf{p})=\frac{\mathbf{p}^{2}}{2 m}+V(\mathbf{x})
$$

Then

$$
\frac{d \mathbf{x}}{d t}=\frac{\partial H}{\partial \mathbf{p}}, \quad \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{x}}
$$

is a first-order ODE system with solutions
(Hamiltonian flow)

$$
(\mathbf{x}(t), \mathbf{p}(t))=\Phi_{t}\left(\mathbf{x}_{0}, \mathbf{p}_{0}\right)
$$

for initial data $(\mathbf{x}(t), \mathbf{p}(t))=\left(\mathbf{x}_{0}, \mathbf{p}_{0}\right)$.
All this is equivalent to a Newtonian equation of motion (second-order ODE for \mathbf{x}) plus a definition of \mathbf{p} in terms of $\dot{\mathbf{x}}$ (or vice versa).
Energy is conserved:

$$
\frac{d}{d t} H(\mathbf{x}(t), \mathbf{p}(t))=\frac{\partial H}{\partial \mathbf{x}} \frac{d \mathbf{x}}{d t}+\frac{\partial H}{\partial \mathbf{p}} \frac{d \mathbf{p}}{d t}=0
$$

So $H(\mathbf{x}(t), \mathbf{p}(t)) \equiv E$.

Two PDEs Associated with H

Schrödinger equation (2nd order, linear): Replace \mathbf{p} by $-i \hbar \nabla, E$ by $+i \hbar \frac{\partial}{\partial t}$.

$$
i \hbar \frac{\partial u}{\partial t}=H u \doteq-\frac{\hbar^{2}}{2 m} \nabla^{2} u+V u .
$$

Time-independent version: $-\frac{\hbar^{2}}{2 m} \nabla^{2} u+V u=E u$.
Hamilton-Jacobi equation (1st order, nonlinear):
Replace \mathbf{p} by $\nabla S, E$ by $-\frac{\partial S}{\partial t}$, where $S(t, \mathbf{x})$ is the unknown.

$$
-\frac{\partial S}{\partial t}=H(\mathbf{x}, \nabla S) \doteq \frac{|\nabla S|^{2}}{2 m}+V(\mathbf{x})
$$

Time-independent version: $H(\mathbf{x}, \nabla S)=E$.
Semiclassical ansatz: $\quad u(t, \mathbf{x})=A(t, \mathbf{x} ; \hbar) e^{i S(t, \mathbf{x}) / \hbar}$, $\hbar \rightarrow 0$, later $A \sim A_{0}+\hbar A_{1}+\hbar^{2} A_{2}+\cdots$. You get

$$
\begin{aligned}
0 \doteq & A\left[\frac{\partial S}{\partial t}+\frac{1}{2 m}|\nabla S|^{2}+V\right] \\
& -i \hbar\left[\frac{\partial A}{\partial t}+\frac{1}{m} \nabla A \cdot \nabla S+\frac{1}{2 m} A \nabla^{2} S\right]-\frac{\hbar^{2}}{2 m} \nabla^{2} A .
\end{aligned}
$$

So solving HJ is first step in an \hbar expansion.

Relation between HJ and classical mechanics
(1) Assume we have a (local) solution of HJ,

$$
-\frac{\partial S(t, \mathbf{x})}{\partial t}=H(\mathbf{x}, \nabla S(t, \mathbf{x}))
$$

and a (local) curve $\mathbf{x}(t)$ satisfying

$$
\frac{d \mathbf{x}}{d t}=\frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}(t), \nabla S(t, \mathbf{x}(t))) \doteq \frac{1}{m} \nabla S(t, \mathbf{x}(t))
$$

Then $(\mathbf{x}(t), \nabla S(t, \mathbf{x}(t)))$ is a trajectory of the Hamiltonian flow (with $\mathbf{p}(t)=\nabla S(t, \mathbf{x}(t))$).
Proof: $\frac{d \mathbf{x}}{d t}=\frac{\partial H}{\partial \mathbf{p}}$ is satisfied by assumption. Why $\frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{x}}$? Calculate

$$
\frac{d p_{i}}{d t}=\frac{\partial^{2} S}{\partial t \partial x_{i}}+\sum_{j} \frac{\partial^{2} S}{\partial x_{j} \partial x_{i}} \frac{d x_{j}}{d t}
$$

And differentiate HJ:

$$
\frac{\partial^{2} S}{\partial x_{i} \partial t}=-\frac{\partial H}{\partial x_{i}}-\sum_{j} \frac{\partial H}{\partial p_{j}} \frac{\partial^{2} S}{\partial x_{i} \partial x_{j}}
$$

Compare: $\quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial x_{i}}$.
Corollary: Entrance of the Lagrangian.
$\frac{d}{d t} S(t, \mathbf{x}(t))=\frac{\partial S}{\partial t}+\dot{\mathbf{x}} \cdot \nabla S=-H+\dot{\mathbf{x}} \cdot \mathbf{p} \equiv L(\mathbf{x}(t), \dot{\mathbf{x}}(t))$.
(2) Conversely, assume we know the flow Φ_{t}. The previous corollary suggests that we should get solutions of HJ by integrating L along the trajectories. Indeed, for given ($t, \mathbf{x}, \mathbf{x}_{0}$) in a sufficiently small neighborhood in $\mathbf{R}^{1+2 d}$, the two-point boundary problem

$$
\mathbf{x}(0)=\mathbf{x}_{0}, \quad \mathbf{x}(t)=\mathbf{x}
$$

for the (Newtonian) equation of motion will have a unique solution $\mathbf{x}(t)$. Define

$$
S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right)=\int_{0}^{t} L(\mathbf{x}(u), \dot{\mathbf{x}}(u)) d u .
$$

Then S solves HJ. (Note that arbitrary initial data $S_{0}\left(\mathrm{x}_{0}\right)$ could be added.)
Proof: is somewhat complicated. See

- Arnold, Mathematical Methods of Classical Mechanics, pp. 253-258 with pp. 233-237.
- Molzahn et al., Ann. Phys. (NY) 214 (1992),

Appendix A.
Corollary: Initial and final momenta.

$$
\mathbf{p}(t)=\nabla_{\mathbf{x}} S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right) .
$$

By symmetry,

$$
\mathbf{p}(0)=-\nabla_{\mathbf{x}_{0}} S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right) \quad\left[+\nabla S_{0}\left(\mathbf{x}_{0}\right), \text { in general }\right] .
$$

(3) Return to (1) and assume we have a parametrized family of (local) solutions of HJ, $S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)$, such that $S\left(0, \mathbf{x} ; \mathbf{p}_{0}\right)=\mathbf{x} \cdot \mathbf{p}_{0}$. Then any flow trajectory, $(\mathbf{x}(t), \mathbf{p}(t))$, running through the domain of S is of the form described in (1), with $\mathbf{p}(0)=\mathbf{p}_{0}$.
Proof: Define $\tilde{\mathbf{x}}(t)$ by

$$
\frac{d \tilde{\mathbf{x}}(t)}{d t}=\frac{\partial H}{\partial \mathbf{p}}(\tilde{\mathbf{x}}(t), \nabla S(t, \tilde{\mathbf{x}}(t) ; \mathbf{p}(0))), \quad \tilde{\mathbf{x}}(0)=\mathbf{x}(0)
$$

and define $\tilde{\mathbf{p}}(t)=\nabla S(t, \tilde{\mathbf{x}}(t) ; \mathbf{p}(0))$. By (1), ($\tilde{\mathbf{x}}, \tilde{\mathbf{p}})$ is a trajectory. Its initial data are $(\mathbf{x}(0), \mathbf{p}(0))$, because $\tilde{\mathbf{p}}(0)=\nabla S(0, \tilde{\mathbf{x}}(0) ; \mathbf{p}(0))=\nabla_{\mathbf{x}(0)}[\mathbf{x}(0) \cdot \mathbf{p}(0)]=\mathbf{p}(0)$. Therefore, $(\tilde{\mathbf{x}}, \tilde{\mathbf{p}})=(\mathbf{x}, \mathbf{p})$ for all t, since trajectory is unique.
Remark: In the context of (2), these solutions are those with $S_{0}\left(\mathbf{x}_{0}\right)=\mathbf{x}_{0} \cdot \mathbf{p}_{0}$. It follows that

$$
\begin{aligned}
\mathbf{p}(0) & =-\nabla_{\mathbf{x}_{0}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)+\nabla S_{0}\left(\mathbf{x}_{0}\right) \\
& =-\nabla_{\mathbf{x}_{0}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)+\mathbf{p}_{0},
\end{aligned}
$$

but we know $\mathbf{p}(0)=\mathbf{p}_{0}$, so $\nabla_{\mathbf{x}_{0}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)=0$, as the notation implies.
(4) Let's be more precise about the two-point boundary problem. We have a flow

$$
\Phi_{t}\left(\mathbf{x}_{0}, \mathbf{p}_{0}\right)=(\mathbf{x}, \mathbf{p}) \equiv\left(\mathbf{x}\left(t, \mathbf{x}_{0}, \mathbf{p}_{0}\right), \mathbf{p}\left(t, \mathbf{x}_{0}, \mathbf{p}_{0}\right)\right) .
$$

Assume that for each (t, \mathbf{p}_{0}) in some open set the map $\mathbf{x}_{0} \mapsto \mathbf{x}\left(t, \mathbf{x}_{0}, \mathbf{p}_{0}\right)$ is a diffeomorphism, so it has inverse $\mathbf{x} \mapsto \mathbf{x}_{0}\left(t, \mathbf{x}, \mathbf{p}_{0}\right)$. In words, \mathbf{x}_{0} is the initial position of a particle of initial momentum \mathbf{p}_{0} that at time t arrives at \mathbf{x}. (In (2) the roles of \mathbf{x}_{0} and \mathbf{p}_{0} were interchanged.) We now claim

$$
\mathbf{x}_{0}\left(t, \mathbf{x}, \mathbf{p}_{0}\right)=\nabla_{\mathbf{p}_{0}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right) .
$$

Proof: Write the claim as

$$
\mathbf{x}_{0}\left(t, \mathbf{x}, \mathbf{p}_{0}\right)=\nabla_{\mathbf{p}_{0}} S\left(t, \mathbf{x}\left(t, \mathbf{x}_{0}, \mathbf{p}_{0}\right) ; \mathbf{p}_{0}\right) .
$$

It holds at $t=0$:

$$
\nabla_{\mathbf{p}_{0}} S\left(0, \mathbf{x}(0) ; \mathbf{p}_{0}\right)=\nabla_{\mathbf{p}_{0}}\left[\mathbf{x}_{0} \cdot \mathbf{p}_{0}\right]=\mathbf{x}_{0} .
$$

Therefore, it holds for all t, because the derivative of the expression vanishes, by calculation like that in (1):

$$
\frac{d x_{0 i}}{d t}=\frac{\partial^{2} S}{\partial t \partial p_{i}}+\sum_{j} \frac{\partial^{2} S}{\partial x_{j} \partial p_{i}} \frac{d x_{j}}{d t}
$$

but differentiating HJ yields

$$
\frac{\partial^{2} S}{\partial p_{i} \partial t}=-\sum_{j} \frac{\partial H}{\partial p_{j}} \frac{\partial^{2} S}{\partial p_{i} \partial x_{j}},
$$

and it all cancels.

Recapitulation
$S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right)=\int_{0}^{t} L$ satisfies

$$
\mathbf{p}=\nabla_{\mathbf{x}} S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right), \quad \mathbf{p}_{0}=-\nabla_{\mathbf{x}_{0}} S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right)
$$

In the language of Goldstein, Classical Mechanics, $-S\left(t, \mathbf{x}, ; \mathbf{x}_{0}\right)$ is a generating function of type F_{1} for Φ_{t} regarded as a canonical transformation from the old variables $\left(\mathbf{x}_{0}, \mathbf{p}_{0}\right)$ to the new variables (\mathbf{x}, \mathbf{p}).
$S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)=\int_{0}^{t} L+\mathbf{x}_{0} \cdot \mathbf{p}_{0}$ (which is actually independent of \mathbf{x}_{0} and has initial data $\left.S\left(0, \mathbf{x} ; \mathbf{p}_{0}\right)=\mathbf{x} \cdot \mathbf{p}_{0}\right)$ satisfies

$$
\mathbf{p}=\nabla_{\mathbf{x}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right), \quad \mathbf{x}_{0}=\nabla_{\mathbf{p}_{0}} S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)
$$

So $-S\left(t, \mathbf{x} ; \mathbf{p}_{0}\right)$ is a generating function of type F_{3} for Φ_{t}.

Remark: Therefore, contrary to appearance, $S\left(t, \mathbf{x} ; \mathbf{x}_{0}\right)$ does not approach 0 as $t \rightarrow 0$ if $\mathbf{x} \neq \mathbf{x}_{0}$. The reason is that if the particle gets from \mathbf{x}_{0} to \mathbf{x} in a very short time, then L is very large!

$$
S\left(0, \mathbf{x} ; \mathbf{x}_{0}\right)=\left(\mathbf{x}-\mathbf{x}_{0}\right) \cdot \mathbf{p}_{0}
$$

The Transport equation

Recall that to solve the Schrödinger equation (for $\left.H=\frac{\mathbf{p}^{2}}{2 m}+V\right)$ through order \hbar^{1} we need to solve

$$
\frac{\partial A}{\partial t}+\frac{1}{m} \nabla A \cdot \nabla S+\frac{1}{2 m} A \nabla^{2} S=0
$$

But because S solves HJ, we have

$$
\nabla S=\mathbf{p} \doteq m \dot{\mathbf{x}}
$$

Therefore,

$$
\left(\frac{\partial}{\partial t}+\frac{1}{m} \nabla S \cdot \nabla\right) A=\left(\frac{\partial}{\partial t}+\dot{\mathbf{x}} \cdot \nabla\right) A=\frac{d A}{d t}(\mathbf{x}(t))
$$

and we can solve for $\ln A$ (actually, $\ln A_{0}$) by integrating along the classical trajectories!

$$
A_{0}(\mathbf{x})=\exp \left[-\frac{1}{2 m} \int_{0}^{t} \nabla^{2} S(u, \mathbf{x}(u)) d u\right]
$$

(where $\mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}(t)=\mathbf{x}$). Higher-order terms $\hbar^{n} A_{n}$ can be calculated in the same way.

Alternative solution: Van Vleck determinant.

$$
A_{0}(\mathbf{x})=\sqrt{\left|\operatorname{det} \nabla_{\mathbf{x}} \nabla_{\mathbf{x}_{0}} S\right|}
$$

This determinant becomes infinite at places \mathbf{x} where the flow ceases to be a diffeomorphism (trajectories emerging from \mathbf{x}_{0} intersect for the first time).

