
The Hamilton–Jacobi Equation,
Semiclassical Asymptotics,

and Stationary Phase

Main source: A. Uribe, Cuernavaca Lectures,
Appendices B and C and parts of Section 2
(first item on our Background Reading page)

Stationary Phase

Consider I(t) ≡
∫
Rn

eitφ(x)a(x) dx,

φ smooth and real-valued (φ ∈ C∞
R (Rn)), a smooth

and compactly supported (a ∈ C∞
0 (Rn)), t → +∞.

(No vector boldface this time; n may not be d.)
Intuition: I is very small for large t, because the inte-
grand oscillates rapidly — except in regions where φ is
nearly constant!
Definition: Points of stationary phase are critical
points of φ (∇φ(x0) = 0).
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I(t) ≡
∫
Rn

eitφ(x)a(x) dx, ∇φ(x0) = 0.

Nonstationary Phase Theorem. If φ has no criti-
cal points in a neighborhood of supp a (i.e., a = 0 at
and near any x0), then I(t) = O(t−N ) for any N .

Proof: Integrate by parts forever! (χ = cutoff.)

aeitφ =
a

it
L(eitφ) where L ≡ χ

|∇φ|2∇φ · ∇ ;

I(t) =
∫

aeitφ dx =
i

t

∫
eitφLta dx,

an integral of same form. Repeat to get
1
tN

.

Corollary (φ(x) = k · x): The Fourier transform of a
smooth function is a function of rapid decrease.
Remark: Compact support is too strong; all we need
is that all endpoint terms vanish. But smoothness of
a and φ is fundamental.
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I(t) ≡
∫
Rn

eitφ(x)a(x) dx, ∇φ(x0) = 0.

Stationary Phase Theorem (quadratic case).
Consider φ(x) = 1

2x ·Ax, detA 6= 0 ; x0 = 0. Then

I(t) ∼
(

2π
t

)n/2
eiπσ/4√
| detA|

∞∑
j=0

bj(a)(0)t−j ,

where bj is a differential operator of order 2j (b0 = 1)
and σ is the signature of A (number of positive eigen-
values minus number of negative eigenvalues).

Proof: Go to a frame where A is diagonal and treat
each dimension separately: For A ∈ R, A > 0, µ > 0,

∫
e−µAx2/2a(x) dx =

1√
2πµA

∫
e−k2/2µAâ(k) dk

(by Parseval’s equation and the Gaussian Fourier
transform formula). Since â has rapid decrease, we
can analytically continue to µ = −it, t > 0:

∫
eitAx2/2a(x) dx =

eiπ/4√
2πt|A|

∫
e−ik2/2tAâ(k) dk.
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For A < 0 you get e−iπ/4 instead. So in dimension n

I(t) =
∫

eitx·Ax/2a(x) dx

=
eiπσ/4

(2πt)n/2
√
| detA|

∫
e−ik·A−1k/2tâ(k) dk.

Expand

e−ik·A−1k/2t ∼ 1− t−1k ·A−1k/2+ · · ·+ t−jO(k2j)+ · · ·

and interpret jth term as Fourier representation of
some 2jth derivatives of a(x) evaluated at 0.
Remark: The series (usually) does not converge,
but it is asymptotic: the remainder after N terms is
O(t−N−1).
Remark: For an integral over a finite interval there
will be additional terms coming from the endpoints.
More generally, if a(x) is only piecewise smooth there
will be extra terms associated with each singularity.
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Definitions: Critical point x0 is nondegenerate if

Hessx0 φ ≡ det
(

∂2φ

∂xi ∂xj
(x0)

)
6= 0.

(Also use Hessx0 φ for the matrix itself.)

Morse’s Lemma. In the vicinity of a nondegenerate
critical point one can choose coordinates so that

φ(x(y)) = φ(x0) +
1
2

n∑
j=1

Λjyj
2

(Λj being the eigenvalues of Hessx0 φ).

Note: No “ + O(y3)”. Cf.
mean value theorem f(x) = f(0) + f ′(c)x
vs. Taylor’s theorem f(x) = f(0) + f ′(0)x + O(x2).
Sketch of proof: Use multidimensional Taylor’s
theorem with remainder (in integral form) to write
φ(x) = φ(x0) + 1

2 (x − x0) · H(x)(x − x0) for some
H(x). Then use implicit function theorem on the
mapping of matrices M 7→ M t

(
Hessx0 φ

)
M to write

H(x) = M(H(x))t
(
Hessx0 φ

)
M(H(x)) and hence

y ≡ M(H(x))(x− x0).
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I(t) ≡
∫
Rn

eitφ(x)a(x) dx, ∇φ(x0) = 0.

Put together the three theorems to get:

Stationary Phase Theorem. Assume φ ∈ C∞
R (Rn),

a ∈ C∞
0 (Rn), and the only critical points of φ in some

neighborhood of supp a are nondegenerate (and hence
isolated); call them x01, . . . , x0K . Then as t →∞

I(t) ∼
(

2π
t

)n/2 K∑
k=1

eiπσk/4eitφ(x0k)√
|Hessx0k

φ|

×
[
a(x0k) +

∞∑
j=1

bk
j (a)(x0k)t−j

]
,

where bk
j are certain PDOs and σk is the signature of

Hessx0k
φ.

See (for instance) S. Zelditch, math.SP/0111078, for a
Feynman-diagram algorithm for bk

j .
Remark: Often in practice the critical points are not
isolated. Instead, there may be a whole submanifold
T of critical points, with Hess φ degenerate in direc-
tions tangent to M. But if it’s nondegenerate in the
normal directions one can apply stationary phase in
those directions and integrate the result over T .
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Hamiltonian classical mechanics

Let H(x,p) be a (smooth) real-valued function de-
fined on [a subset of, or manifold like] R2d (phase
space). Usually, H is a second-degree polynomial
in p. Main example:

H(x,p) =
p2

2m
+ V (x).

Then
dx
dt

=
∂H

∂p
,

dp
dt

= − ∂H

∂x

is a first-order ODE system with solutions
(Hamiltonian flow)

(
x(t),p(t)

)
= Φt(x0,p0)

for initial data
(
x(t),p(t)

)
= (x0,p0).

All this is equivalent to a Newtonian equation of mo-
tion (second-order ODE for x) plus a definition of p
in terms of ẋ (or vice versa).
Energy is conserved:

d

dt
H

(
x(t),p(t)

)
=

∂H

∂x
dx
dt

+
∂H

∂p
dp
dt

= 0.

So H
(
x(t),p(t)

)
≡ E.
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Two PDEs associated with H

Schrödinger equation (2nd order, linear):
Replace p by −ih̄∇, E by +ih̄ ∂

∂t .

ih̄
∂u

∂t
= Hu

.= − h̄2

2m
∇2u + V u.

Time-independent version: − h̄2

2m
∇2u + V u = Eu.

Hamilton–Jacobi equation (1st order, nonlinear):
Replace p by ∇S, E by −∂S

∂t , where S(t,x) is the un-
known.

− ∂S

∂t
= H(x,∇S) .=

|∇S|2
2m

+ V (x).

Time-independent version: H(x,∇S) = E.

Semiclassical ansatz: u(t,x) = A(t,x; h̄)eiS(t,x)/h̄,
h̄ → 0, later A ∼ A0 + h̄A1 + h̄2A2 + · · ·. You get

0 .= A

[
∂S

∂t
+

1
2m

|∇S|2 + V

]

− ih̄

[
∂A

∂t
+

1
m
∇A · ∇S +

1
2m

A∇2S

]
− h̄2

2m
∇2A.

So solving HJ is first step in an h̄ expansion.
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Relation between HJ and classical mechanics

(1) Assume we have a (local) solution of HJ,

− ∂S(t,x)
∂t

= H
(
x,∇S(t,x)

)
,

and a (local) curve x(t) satisfying
dx
dt

=
∂H

∂p

(
x(t),∇S

(
t,x(t)

)) .=
1
m
∇S

(
t,x(t)

)
.

Then
(
x(t),∇S

(
t,x(t)

))
is a trajectory of the Hamil-

tonian flow (with p(t) = ∇S
(
t,x(t)

)
).

Proof: dx
dt = ∂H

∂p is satisfied by assumption. Why
dp
dt = −∂H

∂x ? Calculate

dpi

dt
=

∂2S

∂t ∂xi
+

∑
j

∂2S

∂xj ∂xi

dxj

dt
.

And differentiate HJ:
∂2S

∂xi ∂t
= − ∂H

∂xi
−

∑
j

∂H

∂pj

∂2S

∂xi ∂xj
.

Compare:
dpi

dt
= − ∂H

∂xi
.

Corollary: Entrance of the Lagrangian.
d

dt
S

(
t,x(t)

)
=

∂S

∂t
+ẋ·∇S = −H+ẋ·p ≡ L

(
x(t), ẋ(t)

)
.
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(2) Conversely, assume we know the flow Φt. The pre-
vious corollary suggests that we should get solutions
of HJ by integrating L along the trajectories. Indeed,
for given (t,x,x0) in a sufficiently small neighborhood
in R1+2d, the two-point boundary problem

x(0) = x0 , x(t) = x

for the (Newtonian) equation of motion will have a
unique solution x(t). Define

S(t,x;x0) =
∫ t

0

L
(
x(u), ẋ(u)

)
du.

Then S solves HJ. (Note that arbitrary initial data
S0(x0) could be added.)
Proof: is somewhat complicated. See
• Arnold, Mathematical Methods of Classical

Mechanics, pp. 253–258 with pp. 233–237.
• Molzahn et al., Ann. Phys. (NY) 214 (1992),

Appendix A.
Corollary: Initial and final momenta.

p(t) = ∇xS(t,x;x0).

By symmetry,

p(0) = −∇x0S(t,x;x0) [ +∇S0(x0), in general].
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(3) Return to (1) and assume we have a parametrized
family of (local) solutions of HJ, S(t,x;p0), such that
S(0,x;p0) = x · p0 . Then any flow trajectory,(
x(t),p(t)

)
, running through the domain of S is of the

form described in (1), with p(0) = p0 .
Proof: Define x̃(t) by

dx̃(t)
dt

=
∂H

∂p

(
x̃(t),∇S

(
t, x̃(t);p(0)

))
, x̃(0) = x(0),

and define p̃(t) = ∇S
(
t, x̃(t);p(0)

)
. By (1), (x̃, p̃) is

a trajectory. Its initial data are
(
x(0),p(0)

)
, because

p̃(0) = ∇S
(
0, x̃(0);p(0)

)
= ∇x(0)[x(0) · p(0)] = p(0).

Therefore, (x̃, p̃) = (x,p) for all t, since trajectory is
unique.
Remark: In the context of (2), these solutions are
those with S0(x0) = x0 · p0. It follows that

p(0) = −∇x0S(t,x;p0) +∇S0(x0)
= −∇x0S(t,x;p0) + p0 ,

but we know p(0) = p0 , so ∇x0S(t,x;p0) = 0, as the
notation implies.
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(4) Let’s be more precise about the two-point bound-
ary problem. We have a flow

Φt(x0,p0) = (x,p) ≡
(
x(t,x0,p0),p(t,x0,p0)

)
.

Assume that for each (t,p0) in some open set the map
x0 7→ x(t,x0,p0) is a diffeomorphism, so it has inverse
x 7→ x0(t,x,p0). In words, x0 is the initial position
of a particle of initial momentum p0 that at time t
arrives at x. (In (2) the roles of x0 and p0 were inter-
changed.) We now claim

x0(t,x,p0) = ∇p0S(t,x;p0).
Proof: Write the claim as

x0(t,x,p0) = ∇p0S
(
t,x(t,x0,p0);p0

)
.

It holds at t = 0:
∇p0S(0,x(0);p0) = ∇p0 [x0 · p0] = x0 .

Therefore, it holds for all t, because the derivative of
the expression vanishes, by calculation like that in (1):

dx0i

dt
=

∂2S

∂t ∂pi
+

∑
j

∂2S

∂xj ∂pi

dxj

dt
,

but differentiating HJ yields
∂2S

∂pi ∂t
= −

∑
j

∂H

∂pj

∂2S

∂pi ∂xj
,

and it all cancels.
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Recapitulation

S(t,x;x0) =
∫ t

0
L satisfies

p = ∇xS(t,x;x0), p0 = −∇x0S(t,x;x0).

In the language of Goldstein, Classical Mechanics,
−S(t,x, ;x0) is a generating function of type F1 for
Φt regarded as a canonical transformation from the
old variables (x0,p0) to the new variables (x,p).

S(t,x;p0) =
∫ t

0
L + x0 · p0 (which is actually inde-

pendent of x0 and has initial data S(0,x;p0) = x · p0)
satisfies

p = ∇xS(t,x;p0), x0 = ∇p0S(t,x;p0).

So −S(t,x;p0) is a generating function of type F3

for Φt .

Remark: Therefore, contrary to appearance,
S(t,x;x0) does not approach 0 as t → 0 if x 6= x0 .
The reason is that if the particle gets from x0 to x in
a very short time, then L is very large!

S(0,x;x0) = (x− x0) · p0 .
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The transport equation

Recall that to solve the Schrödinger equation (for
H = p2

2m + V ) through order h̄1 we need to solve

∂A

∂t
+

1
m
∇A · ∇S +

1
2m

A∇2S = 0.

But because S solves HJ, we have

∇S = p .= mẋ.

Therefore,(
∂

∂t
+

1
m
∇S · ∇

)
A =

(
∂

∂t
+ ẋ · ∇

)
A =

dA

dt

(
x(t)

)
,

and we can solve for lnA (actually, lnA0) by integrat-
ing along the classical trajectories!

A0(x) = exp
[
− 1

2m

∫ t

0

∇2S
(
u,x(u)

)
du

]

(where x(0) = x0 , x(t) = x). Higher-order terms
h̄nAn can be calculated in the same way.

Alternative solution: Van Vleck determinant.

A0(x) =
√
| det∇x∇x0S| .

This determinant becomes infinite at places x where
the flow ceases to be a diffeomorphism (trajectories
emerging from x0 intersect for the first time).
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